254 resultados para B3 REPLICATION
em Université de Lausanne, Switzerland
Resumo:
The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the 'missing heritability'. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs) as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25), we had sufficient statistical power to detect the large majority (80%) of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10(-4) (95% confidence interval [9.6×10(-5)-3.1×10(-4)]); accounts overall for 0.5% [0.19%-0.82%] of severe childhood obesity cases (P = 3.8×10(-10); odds ratio = 25.0 [9.9-60.6]); and results in a mean body mass index (BMI) increase of 5.8 kg.m(-2) [1.8-10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially valuable for the identification of variants making an appreciable contribution to complex disease.
Resumo:
The STEP HIV vaccine trial, which evaluated a replication-defective adenovirus type 5 (Ad5) vector vaccine, was recently stopped. The reasons for this included lack of efficacy of the vaccine and a twofold increase in the incidence of HIV acquisition among vaccinated recipients with increased Ad5-neutralizing antibody titers compared with placebo recipients. To model the events that might be occurring in vivo, the effect on dendritic cells (DCs) of Ad5 vector alone or treated with neutralizing antiserum (Ad5 immune complexes [IC]) was compared. Ad5 IC induced more notable DC maturation, as indicated by increased CD86 expression, decreased endocytosis, and production of tumor necrosis factor and type I interferons. We found that DC stimulation by Ad5 IC was mediated by the Fcgamma receptor IIa and Toll-like receptor 9 interactions. DCs treated with Ad5 IC also induced significantly higher stimulation of Ad5-specific CD8 T cells equipped with cytolytic machinery. In contrast to Ad5 vectors alone, Ad5 IC caused significantly enhanced HIV infection in DC-T cell cocultures. The present results indicate that Ad5 IC activates a DC-T cell axis that, together with the possible persistence of the Ad5 vaccine in seropositive individuals, may set up a permissive environment for HIV-1 infection, which could account for the increased acquisition of HIV-1 infection among Ad5 seropositive vaccine recipients.
Resumo:
The gut mucosal epithelium separates the host from the microbiota, but enteropathogens such as Salmonella Typhimurium (S.Tm) can invade and breach this barrier. Defenses against such acute insults remain incompletely understood. Using a murine model of Salmonella enterocolitis, we analyzed mechanisms limiting pathogen loads in the epithelium during early infection. Although the epithelium-invading S.Tm replicate initially, this intraepithelial replicative niche is restricted by expulsion of infected enterocytes into the lumen. This mechanism is compromised if inflammasome components (NAIP1-6, NLRC4, caspase-1/-11) are deleted, or ablated specifically in the epithelium, resulting in ∼100-fold higher intraepithelial loads and accelerated lymph node colonization. Interestingly, the cytokines downstream of inflammasome activation, interleukin (IL)-1α/β and IL-18, appear dispensable for epithelial restriction of early infection. These data establish the role of an epithelium-intrinsic inflammasome, which drives expulsion of infected cells to restrict the pathogen's intraepithelial proliferation. This may represent a general defense mechanism against mucosal infections.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1.
Resumo:
Research by L. Postow, C. Ullsperger, R.W. Keller, C. Bustamante, A.V. Vologodskii, and N.R. Cozzarelli, J. Biol. Chem. 2001, 276, 2790 Condensation and commentary by Alexander Bucka and Andrzej Stasiak, Universite ´ de Lausanne, Switzerland Purpose of the Study To demonstrate that positive torsional strain generated during DNA replication can lead to reversals of replication forks and, consequently can result in the formation of four-way DNA junctions
Resumo:
Formation of a membrane-associated replication complex, composed of viral proteins, replicating RNA, altered cellular membranes, and other host factors, is a hallmark of all positive-strand RNA viruses. In the case of HCV, RNA replication takes place in a likely endoplasmic reticulum-derived membrane alteration referred to as the "membranous web." In vitro transcription-translation, membrane extraction and flotation analyses, immunofluorescence microscopy, fluorescent in situ hybridization, and RNA metabolic labeling followed by confocal laser scanning microscopy have yielded insights into the structure and function of the HCV replication complex. We describe these techniques and highlight selected results.
Resumo:
HCV infection has a severe course of disease in HIV/HCV co-infection and in liver transplant recipients. However, the mechanisms involved remain unclear. Here, we evaluated functional profiles of HCV-specific T-cell responses in 86 HCV mono-infected patients, 48 HIV/HCV co-infected patients and 42 liver transplant recipients. IFN-gamma and IL-2 production and ability of CD4 and CD8 T cells to proliferate were assessed after stimulation with HCV-derived peptides. We observed that HCV-specific T-cell responses were polyfunctional in HCV mono-infected patients, with presence of proliferating single IL-2-, dual IL-2/IFN-gamma and single IFN-gamma-producing CD4+ and dual IL-2/IFN-gamma and single IFN-gamma-producing CD8+ cells. In contrast, HCV-specific T-cell responses had an effector profile in HIV/HCV co-infected individuals and liver transplant recipients with absence of single IL-2-producing HCV-specific CD4+ and dual IL-2/IFN-gamma-producing CD8+ T cells. In addition, HCV-specific proliferation of CD4+ and CD8+ T cells was severely impaired in HIV/HCV co-infected patients and liver transplant recipients. Importantly, "only effector" T-cell responses were associated with significantly higher HCV viral load and more severe liver fibrosis scores. Therefore, the present results suggest that immune-based mechanisms may contribute to explain the accelerated course of HCV infection in conditions of HIV-1 co-infection and liver transplantation.
Resumo:
Background: In order to improve the immunogenicity of currently available non-replicating pox virus HIV vaccine vectors, NYVAC was genetically modified through re-insertion of two host range genes (K1L and C7L), resulting in restored replicative capacity in human cells. Methods: In the present study these vectors, expressing either a combination of the HIV-1 clade C antigens Env, Gag, Pol, Nef, or a combination of Gal, Pol, Nef were evaluated for safety and immunogenicity in rhesus macaques, which were immunized at weeks 0, 4 and 12 either by scarification (conventional poxvirus route of immunization), intradermal or by intramuscular injection (route used in previous vaccine studies). Results: Replication competent NYVAC-C-KC vectors induced higher HIV-specific responses, as measured by IFN-g ELISpot assay, than the replication defective NYVAC-C vectors. Application through scarification only required one immunization to induce maximum HIV-specific immune responses. This method simultaneously induced relatively lower anti-vector responses. In contrast, two to three immunizations were required when the NYVAC-C-KC vectors were given by intradermal or intramuscular injection and this method tended to generate slightly lower responses. Responses were predominantly directed against Env in the animals that received NYVAC-C-KC vectors expressing HIV-1 Env, Gag, Pol, Nef, while Gag responses were dominant in the NYVAC-C-KC HIV-1 Gag, Pol, Nef immunized animals. Conclusion: The current study demonstrates that NYVAC replication competent vectors were well tolerated and showed increased immunogenicity as compared to replication defective vectors. Further studies are needed to evaluate the most efficient route of immunization and to explore the use of these replication competent NYVAC vectors in prime/boost combination with gp120 proteinbased vaccine candidates. This study was performed within the Poxvirus T-cell Vaccine Discovery Consortium (PTVDC) which is part of the CAVD program.
Resumo:
The concept of ideal geometric configurations was recently applied to the classification and characterization of various knots. Different knots in their ideal form (i.e., the one requiring the shortest length of a constant-diameter tube to form a given knot) were shown to have an overall compactness proportional to the time-averaged compactness of thermally agitated knotted polymers forming corresponding knots. This was useful for predicting the relative speed of electrophoretic migration of different DNA knots. Here we characterize the ideal geometric configurations of catenanes (called links by mathematicians), i.e., closed curves in space that are topologically linked to each other. We demonstrate that the ideal configurations of different catenanes show interrelations very similar to those observed in the ideal configurations of knots. By analyzing literature data on electrophoretic separations of the torus-type of DNA catenanes with increasing complexity, we observed that their electrophoretic migration is roughly proportional to the overall compactness of ideal representations of the corresponding catenanes. This correlation does not apply, however, to electrophoretic migration of certain replication intermediates, believed up to now to represent the simplest torus-type catenanes. We propose, therefore, that freshly replicated circular DNA molecules, in addition to forming regular catenanes, may also form hemicatenanes.
Resumo:
Background: Recombinant viruses based on the attenuated vaccinia virus strain NYVAC are promising HIV vaccine candidates as phase I/II clinical trials have shown good safety and immunogenicity profiles. However, this NYVAC strain is non-replicating in most human cell lines and encodes viral inhibitors of the immune system. Methods: With the aim to increase the immune potency of the current NYVAC-C vector (expressing the codon optimized clade C HIV-1 genes encoding gp120 and Gag-Pol-Nef polyprotein), we have generated and characterized three NYVAC-C-based vectors by, 1) deletion of the viral type I IFN inhibitor gene (NYVAC-CdeltaB19R), 2) restoration of virus replication competence in human cells by re-inserting K1L and C7L host range genes (NYVAC-C-KC) and, 3) combination of both strategies (NYVACC- KC-deltaB19R). Results: Insertion of the KC fragment restored the replication competence of the viruses in human cells (HeLa cells and primary dermal fibroblasts and keratinocytes), increased the expression of HIV antigens by more than 3-fold compared to the non-replicating homologs, inhibited apoptosis induced by the parental NYVAC-C and retained attenuation in a newborn mouse model. In adult mice, replication-competent viruses showed a limited capacity to replicate in tissues surrounding the inoculation site (ovaries and lymph nodes). After infection of keratinocytes, PBMCs and dendritic cells these viruses induced differential modulation in specific host cell signal transduction pathways, triggering genes important in immune modulation. Conclusion: We have developed improved NYVAC-C-based vectors with enhanced HIV-1 antigen expression, with the ability to replicate in cultured human cells and partially in some tissues, with an induced expression of cellular genes relevant to immune system activation, and which trigger IFN-dependent and independent signalling pathways, while maintaining a safety phenotype. These new vectors are promising new HIV vaccine candidates. These studies were performed within the Poxvirus Tcell Vaccine Discovery Consortium (PTVDC) which is part of the CAVD program.
Resumo:
Fanconi anemia (FA) is a genetically heterogeneous chromosome instability syndrome associated with congenital abnormalities, bone marrow failure, and cancer predisposition. Eight FA proteins form a nuclear core complex, which promotes tolerance of DNA lesions in S phase, but the underlying mechanisms are still elusive. We reported recently that the FA core complex protein FANCM can translocate Holliday junctions. Here we show that FANCM promotes reversal of model replication forks via concerted displacement and annealing of the nascent and parental DNA strands. Fork reversal by FANCM also occurs when the lagging strand template is partially single-stranded and bound by RPA. The combined fork reversal and branch migration activities of FANCM lead to extensive regression of model replication forks. These observations provide evidence that FANCM can remodel replication fork structures and suggest a mechanism by which FANCM could promote DNA damage tolerance in S phase
Resumo:
OBJECTIVES: After structured treatment interruption (STI) of treatment for HIV-1, a fraction of patients maintain suppressed viral loads. Prospective identification of such patients might improve HIV-1 treatment, if selected patients are offered STI. METHODS: We analysed the effect of previously identified genetic modulators of HIV-1 disease progression on patients' ability to suppress viral replication after STI. Polymorphisms in the genes killer cell immunoglobulin-like receptor 3DLI (KIR3DL1)/KIR3DS1, human leucocyte antigen B (HLA-B) and HLA Complex P5 (HCP5), and a polymorphism affecting HLA-C surface expression were analysed in 130 Swiss HIV Cohort Study patients undergoing STI. Genotypes were correlated with viral load levels after STI. RESULTS: We observed a statistically significant reduction in viral load after STI in carriers of HLA-B alleles containing either the Bw480Thr or the Bw480Ile epitope (mean adjusted effect on post-STI viral load: -0.82 log HIV-1 RNA copies/ml, P < 0.001; and -1.12 log copies/ml, P < 0.001, respectively). No significant effects were detected for the other polymorphisms analysed. The likelihood of being able to control HIV-1 replication using a prespecified cut-off (viral load increase < 1000 copies/ml) increased from 39% in Bw4-negative patients to 53% in patients carrying Bw4-80Thr, and to 65% in patients carrying Bw4-80Ile (P = 0.02). CONCLUSIONS: These data establish a significant impact of HLA-Bw4 on the control of viral replication after STI.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle.