57 resultados para Average velocity
em Université de Lausanne, Switzerland
Resumo:
The wound response prohormone jasmonic acid (JA) accumulates rapidly in tissues both proximal and distal to injury sites in plants. Using quantitative liquid chromatography-mass spectrometry after flash freezing of tissues, we found that JA accumulated within 30 s of injury in wounded Arabidopsis leaves (p = 3.5 e(-7)). JA augmentation distal to wounds was strongest in unwounded leaves with direct vascular connections to wounded leaves wherein JA levels increased significantly within 120 s of wounding (p = 0.00027). This gave conservative and statistically robust temporal boundaries for the average velocity of the long distance signal leading to distal JA accumulation in unwounded leaves of 3.4-4.5 cm min(-1). Like JA, transcripts of the JA synthesis gene LIPOXYGENASE2 (LOX2) and the jasmonate response gene JAZ10.3 also accumulated to higher levels in directly interconnected leaves than in indirectly connected leaves. JA accumulation in a lox2-1 mutant plant was initiated rapidly after wounding then slowed progressively compared with the wild type (WT). Despite this, JAZ10.3 expression in the two genotypes was similar. Free cyclopentenone jasmonate levels were similar in both resting WT and lox2-1. In contrast, bound cyclopentenone jasmonates (arabidopsides) were far lower in lox2-1 than in the WT. The major roles of LOX2 are to generate arabidopsides and the large levels of JA that accumulate proximal to the wound. LOX2 is not essential for some of the most rapid events elicited by wounding.
Resumo:
A ubiquitous assessment of swimming velocity (main metric of the performance) is essential for the coach to provide a tailored feedback to the trainee. We present a probabilistic framework for the data-driven estimation of the swimming velocity at every cycle using a low-cost wearable inertial measurement unit (IMU). The statistical validation of the method on 15 swimmers shows that an average relative error of 0.1 ± 9.6% and high correlation with the tethered reference system (rX,Y=0.91 ) is achievable. Besides, a simple tool to analyze the influence of sacrum kinematics on the performance is provided.
Resumo:
PURPOSE: To evaluate accuracy and reproducibility of flow velocity and volume measurements in a phantom and in human coronary arteries using breathhold velocity-encoded (VE) MRI with spiral k-space sampling at 3 Tesla. MATERIALS AND METHODS: Flow velocity assessment was performed using VE MRI with spiral k-space sampling. Accuracy of VE MRI was tested in vitro at five constant flow rates. Reproducibility was investigated in 19 healthy subjects (mean age 25.4 +/- 1.2 years, 11 men) by repeated acquisition in the right coronary artery (RCA). RESULTS: MRI-measured flow rates correlated strongly with volumetric collection (Pearson correlation r = 0.99; P < 0.01). Due to limited sample resolution, VE MRI overestimated the flow rate by 47% on average when nonconstricted region-of-interest segmentation was used. Using constricted region-of-interest segmentation with lumen size equal to ground-truth luminal size, less than 13% error in flow rate was found. In vivo RCA flow velocity assessment was successful in 82% of the applied studies. High interscan, intra- and inter-observer agreement was found for almost all indices describing coronary flow velocity. Reproducibility for repeated acquisitions varied by less than 16% for peak velocity values and by less than 24% for flow volumes. CONCLUSION: 3T breathhold VE MRI with spiral k-space sampling enables accurate and reproducible assessment of RCA flow velocity.
Resumo:
One aim of this study is to determine the impact of water velocity on the uptake of indicator polychlorinated biphenyls (iPCBs) by silicone rubber (SR) and low-density polyethylene (LDPE) passive samplers. A second aim is to assess the efficiency of performance reference compounds (PRCs) to correct for the impact of water velocity. SR and LDPE samplers were spiked with 11 or 12 PRCs and exposed for 6 weeks to four different velocities (in the range of 1.6 to 37.7 cm s−1) in river-like flow conditions using a channel system supplied with river water. A relationship between velocity and the uptakewas found for each iPCB and enables to determine expected changes in the uptake due to velocity variations. For both samplers, velocity increases from 2 to 10 cm s−1, 30 cm s−1 (interpolated data) and 100 cm s−1 (extrapolated data) lead to increases of the uptake which do not exceed a factor of 2, 3 and 4.5, respectively. Results also showed that the influence of velocity decreased with increasing the octanol-water coefficient partition (log Kow) of iPCBs when SR is used whereas the opposite effect was observed for LDPE. Time-weighted average (TWA) concentrations of iPCBs in water were calculated from iPCB uptake and PRC release. These calculations were performed using either a single PRC or all the PRCs. The efficiency of PRCs to correct the impact of velocity was assessed by comparing the TWA concentrations obtained at the four tested velocities. For SR, a good agreement was found among the four TWA concentrations with both methods (average RSD b 10%). Also for LDPE, PRCs offered a good correction of the impact of water velocity (average RSD of about 10 to 20%). These results contribute to the process of acceptance of passive sampling in routine regulatory monitoring programs.
Resumo:
The objective of this work is to present a multitechnique approach to define the geometry, the kinematics, and the failure mechanism of a retrogressive large landslide (upper part of the La Valette landslide, South French Alps) by the combination of airborne and terrestrial laser scanning data and ground-based seismic tomography data. The advantage of combining different methods is to constrain the geometrical and failure mechanism models by integrating different sources of information. Because of an important point density at the ground surface (4. 1 points m?2), a small laser footprint (0.09 m) and an accurate three-dimensional positioning (0.07 m), airborne laser scanning data are adapted as a source of information to analyze morphological structures at the surface. Seismic tomography surveys (P-wave and S-wave velocities) may highlight the presence of low-seismic-velocity zones that characterize the presence of dense fracture networks at the subsurface. The surface displacements measured from the terrestrial laser scanning data over a period of 2 years (May 2008?May 2010) allow one to quantify the landslide activity at the direct vicinity of the identified discontinuities. An important subsidence of the crown area with an average subsidence rate of 3.07 m?year?1 is determined. The displacement directions indicate that the retrogression is controlled structurally by the preexisting discontinuities. A conceptual structural model is proposed to explain the failure mechanism and the retrogressive evolution of the main scarp. Uphill, the crown area is affected by planar sliding included in a deeper wedge failure system constrained by two preexisting fractures. Downhill, the landslide body acts as a buttress for the upper part. Consequently, the progression of the landslide body downhill allows the development of dip-slope failures, and coherent blocks start sliding along planar discontinuities. The volume of the failed mass in the crown area is estimated at 500,000 m3 with the sloping local base level method.
Resumo:
BACKGROUND: Pulse wave velocity (PWV), an index of arterial wall stiffness, is modulated by blood pressure (BP). Whether heart rate (HR) is also a modulator of PWV is controversial. Recent research involving mainly patients with high aortic PWV have found either no change or a positive correlation between the two. Given that PWV is increasingly being measured in cardiovascular studies, the relationship between HR and PWV should be known in patients with preserved arterial wall elasticity. OBJECTIVE: The aim of this study was to evaluate the importance of HR as a determinant of the variability in PWV in patients with a low degree of atherosclerosis. DESIGN AND METHODS: Fourteen patients (five female, nine male; aged 68 +/- 8 years) were evaluated post pacemaker implantation due to sick sinus or carotid hypersensitivity syndromes. Carotid-femoral PWV was measured at rest and during atrial pacing at 80, 90 and 100 bpm (paced HR). Arterial femoral blood flow (AFBF) was measured by echodoppler. RESULTS: PWV increased from 6.2 +/- 1.5 m/s (mean +/- SD) during resting sinus rhythm (HR 62 +/- 8 bpm; mean +/- SD) to 6.8 +/- 1.0, 7.0 +/- 0.9, and 7.6 +/- 1.1 m/s at pacing rates of 80, 90 and 100 bpm, respectively (P < 0.0001). Systolic (SBP) and mean blood pressure (MBP) remained constant at all HR levels, whereas AFBF increased in a linear fashion. CONCLUSIONS: These results demonstrate that even in patients with a low degree of atherosclerosis, HR is a potential modulator of carotid-femoral PWV.
Resumo:
We compared cerebral blood flow velocity during anesthesia with sevoflurane and halothane in 23 children admitted for elective surgery (age, 0.4-9.7 yr; median age, 1.9 yr; ASA physical status I-II). Inhaled induction was performed in a randomized sequence with sevoflurane or halothane. Under steady-state conditions, cerebral blood flow velocity (systolic [V(s)], mean [V(mn)], and diastolic [VD]) were measured by a blinded investigator using transcranial pulsed Doppler ultrasonography. The anesthetic was then changed. CBFV measurements were repeated after washout of the first anesthetic and after steady-state of the second (equivalent minimal alveolar concentration to first anesthetic). The resistance index was calculated. VD and V(mn) were significantly lower during sevoflurane (V(mn) 1.35 m/s) than during halothane (V(mn) 1.50 m/s; P = 0.001), whereas V(s) was unchanged. The resistance index was lower during halothane (P < 0.001). Our results indicate lower vessel resistance and higher mean velocity during halothane than during sevoflurane. IMPLICATIONS: The mean cerebral blood flow velocity is significantly decreased in children during inhaled anesthesia with sevoflurane than during halothane. This might be relevant for the choice of anesthetic in children with risk of increased intracranial pressure, neurosurgery, or craniofacial osteotomies.
Resumo:
Introduction: Falls efficacy, defined as confidence in performing activities without falling, is a measure of fear of falling associated with gait impairment, falls and functional decline in frail older people. This relationship has not been well studied in high-functioning older people. Objective: To evaluate the relationship between falls efficacy and gait performance in a cohort of high-functioning older people. Methods: Subjects (N = 864) were a subsample of communitydwelling older people aged 65 to 70 years, enrolled in the "Lc65+" cohort, who completed gait assessment at baseline. Data were collected on demographics, functional, cognitive, affective, and health status. Falls efficacy was assessed using the Falls Efficacy Scale- International (FES-I) that measures confidence in performing 16 activities of daily life (ADL) without falling (score from 16 to 64, higher score indicates lower confidence). Gait parameters were measured over a 20 m walk at preferred gait speed using Physilog, an ambulatory gait monitoring system. Results: Participants (mean age 68.0 ± 1.4 years, 55.0% women) had excellent physical (92.2% independent in basic ADL, mean gait speed 1.13 ± 0.16 m/sec) and cognitive (98.0% with MMSE 024) performance. Nevertheless, 22.1% reported depressive symptoms and 16.1% one or more fall in the previous year. Mean FES-I score was 18.8 ± 4.1. Falls efficacy was associated with gait speed (Spearman rho -0.23, P <.001) and gait variability (Spearman rho 0.10, P = .006), measured by the coefficient of variation of stride velocity. These associations remained in multivariate analysis for both gait speed (adj [beta] coeff: -0.008, 95%CI -0.005 to -0.010, P <.001) and gait variability (adj [beta] coeff 0.024, 95%CI 0.003 to 0.045, P = .023) independent of gender, falls, functional, affective, cognitive, and frailty (Fried's criteria) status. On average, compared to subjects with poor confidence in performing one ADL without falling, those with full confidence had a 0.02 m/sec (2%) faster gait speed and a 2% decrease in gait variability. Conclusion: Even in high-functioning older people, poor falls efficacy is associated with reduced gait speed and stability, independent of health, functional, and frailty status. The direction of this relationship needs to be investigated prospectively to determine causality and design interventions to improve gait performance, reduce fall risk, and prevent functional decline.
Resumo:
In this paper, we study the average crossing number of equilateral random walks and polygons. We show that the mean average crossing number ACN of all equilateral random walks of length n is of the form . A similar result holds for equilateral random polygons. These results are confirmed by our numerical studies. Furthermore, our numerical studies indicate that when random polygons of length n are divided into individual knot types, the for each knot type can be described by a function of the form where a, b and c are constants depending on and n0 is the minimal number of segments required to form . The profiles diverge from each other, with more complex knots showing higher than less complex knots. Moreover, the profiles intersect with the ACN profile of all closed walks. These points of intersection define the equilibrium length of , i.e., the chain length at which a statistical ensemble of configurations with given knot type -upon cutting, equilibration and reclosure to a new knot type -does not show a tendency to increase or decrease . This concept of equilibrium length seems to be universal, and applies also to other length-dependent observables for random knots, such as the mean radius of gyration Rg.
Resumo:
The number of physical activity measures and indexes used in the human literature is large and may result in some difficulty for the average investigator to choose the most appropriate measure. Accordingly, this review is intended to provide information on the utility and limitations of the various measures. Its primary focus is the objective assessment of free-living physical activity in humans based on physiological and biomechanical methods. The physical activity measures have been classified into three categories: Measures based on energy expenditure or oxygen uptake, such as activity energy expenditure, activity-related time equivalent, physical activity level, physical activity ratio, metabolic equivalent, and a new index of potential interest, daytime physical activity level. Measures based on heart rate monitoring, such as net heart rate, physical activity ratio heart rate, physical activity level heart rate, activity-related time equivalent, and daytime physical activity level heart rate. Measures based on whole-body accelerometry (counts/U time). Quantification of the velocity and duration of displacement in outdoor conditions by satellites using the Differential Global Positioning System may constitute a surrogate for physical activity, because walking is the primary activity of man in free-living conditions. A general outline of the measures and indexes described above is presented in tabular form, along with their respective definition, usual applications, advantages, and shortcomings. A practical example is given with typical values in obese and non-obese subjects. The various factors to be considered in the selection of physical activity methods include experimental goals, sample size, budget, cultural and social/environmental factors, physical burden for the subject, and statistical factors, such as accuracy and precision. It is concluded that no single current technique is able to quantify all aspects of physical activity under free-living conditions, requiring the use of complementary methods. In the future, physical activity sensors, which are of low-cost, small-sized, and convenient for subjects, investigators, and clinicians, are needed to reliably monitor, during extended periods in free-living situations, small changes in movements and grade as well as duration and intensity of typical physical activities.
Resumo:
Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.
Resumo:
The purpose of this study was to test the hypothesis that athletes having a slower oxygen uptake ( VO(2)) kinetics would benefit more, in terms of time spent near VO(2max), from an increase in the intensity of an intermittent running training (IT). After determination of VO(2max), vVO(2max) (i.e. the minimal velocity associated with VO(2max) in an incremental test) and the time to exhaustion sustained at vVO(2max) ( T(lim)), seven well-trained triathletes performed in random order two IT sessions. The two IT comprised 30-s work intervals at either 100% (IT(100%)) or 105% (IT(105%)) of vVO(2max) with 30-s recovery intervals at 50% of vVO(2max) between each repeat. The parameters of the VO(2) kinetics (td(1), tau(1), A(1), td(2), tau(2), A(2), i.e. time delay, time constant and amplitude of the primary phase and slow component, respectively) during the T(lim) test were modelled with two exponential functions. The highest VO(2) reached was significantly lower ( P<0.01) in IT(100%) run at 19.8 (0.9) km(.)h(-1) [66.2 (4.6) ml(.)min(-1.)kg(-1)] than in IT(105%) run at 20.8 (1.0) km(.)h(-1) [71.1 (4.9) ml(.)min(-1.)kg(-1)] or in the incremental test [71.2 (4.2) ml(.)min(-1.)kg(-1)]. The time sustained above 90% of VO(2max) in IT(105%) [338 (149) s] was significantly higher ( P<0.05) than in IT(100%) [168 (131) s]. The average T(lim) was 244 (39) s, tau(1) was 15.8 (5.9) s and td(2) was 96 (13) s. tau(1) was correlated with the difference in time spent above 90% of VO(2max) ( r=0.91; P<0.01) between IT(105%) and IT(100%). In conclusion, athletes with a slower VO(2) kinetics in a vVO(2max) constant-velocity test benefited more from the 5% rise of IT work intensity, exercising for longer above 90% of VO(2max) when the IT intensity was increased from 100 to 105% of vVO(2max).