2 resultados para Automatic evaluation

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new method, based on inertial sensors, to automatically measure at high frequency the durations of the main phases of ski jumping (i.e. take-off release, take-off, and early flight). The kinematics of the ski jumping movement were recorded by four inertial sensors, attached to the thigh and shank of junior athletes, for 40 jumps performed during indoor conditions and 36 jumps in field conditions. An algorithm was designed to detect temporal events from the recorded signals and to estimate the duration of each phase. These durations were evaluated against a reference camera-based motion capture system and by trainers conducting video observations. The precision for the take-off release and take-off durations (indoor < 39 ms, outdoor = 27 ms) can be considered technically valid for performance assessment. The errors for early flight duration (indoor = 22 ms, outdoor = 119 ms) were comparable to the trainers' variability and should be interpreted with caution. No significant changes in the error were noted between indoor and outdoor conditions, and individual jumping technique did not influence the error of take-off release and take-off. Therefore, the proposed system can provide valuable information for performance evaluation of ski jumpers during training sessions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new method for lysis of single cells in continuous flow, where cells are sequentially trapped, lysed and released in an automatic process. Using optimized frequencies, dielectrophoretic trapping allows exposing cells in a reproducible way to high electrical fields for long durations, thereby giving good control on the lysis parameters. In situ evaluation of cytosol extraction on single cells has been studied for Chinese hamster ovary (CHO) cells through out-diffusion of fluorescent molecules for different voltage amplitudes. A diffusion model is proposed to correlate this out-diffusion to the total area of the created pores, which is dependent on the potential drop across the cell membrane and enables evaluation of the total pore area in the membrane. The dielectrophoretic trapping is no longer effective after lysis because of the reduced conductivity inside the cells, leading to cell release. The trapping time is linked to the time required for cytosol extraction and can thus provide additional validation of the effective cytosol extraction for non-fluorescent cells. Furthermore, the application of one single voltage for both trapping and lysis provides a fully automatic process including cell trapping, lysis, and release, allowing operating the device in continuous flow without human intervention.