2 resultados para Automated software engineering

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a new approach and related indicators for globally distributed software support and development based on a 3-year process improvement project in a globally distributed engineering company. The company develops, delivers and supports a complex software system with tailored hardware components and unique end-customer installations. By applying the domain knowledge from operations management on lead time reduction and its multiple benefits to process performance, the workflows of globally distributed software development and multitier support processes were measured and monitored throughout the company. The results show that the global end-to-end process visibility and centrally managed reporting at all levels of the organization catalyzed a change process toward significantly better performance. Due to the new performance indicators based on lead times and their variation with fixed control procedures, the case company was able to report faster bug-fixing cycle times, improved response times and generally better customer satisfaction in its global operations. In all, lead times to implement new features and to respond to customer issues and requests were reduced by 50%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS: A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS: The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS: The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period.