334 resultados para Auditory Perceptual Disorders

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A right-handed man developed a sudden transient, amnestic syndrome associated with bilateral hemorrhage of the hippocampi, probably due to Urbach-Wiethe disease. In the 3rd month, despite significant hippocampal structural damage on imaging, only a milder degree of retrograde and anterograde amnesia persisted on detailed neuropsychological examination. On systematic testing of recognition of facial and vocal expression of emotion, we found an impairment of the vocal perception of fear, but not that of other emotions, such as joy, sadness and anger. Such selective impairment of fear perception was not present in the recognition of facial expression of emotion. Thus emotional perception varies according to the different aspects of emotions and the different modality of presentation (faces versus voices). This is consistent with the idea that there may be multiple emotion systems. The study of emotional perception in this unique case of bilateral involvement of hippocampus suggests that this structure may play a critical role in the recognition of fear in vocal expression, possibly dissociated from that of other emotions and from that of fear in facial expression. In regard of recent data suggesting that the amygdala is playing a role in the recognition of fear in the auditory as well as in the visual modality this could suggest that the hippocampus may be part of the auditory pathway of fear recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discriminating complex sounds relies on multiple stages of differential brain activity. The specific roles of these stages and their links to perception were the focus of the present study. We presented 250ms duration sounds of living and man-made objects while recording 160-channel electroencephalography (EEG). Subjects categorized each sound as that of a living, man-made or unknown item. We tested whether/when the brain discriminates between sound categories even when not transpiring behaviorally. We applied a single-trial classifier that identified voltage topographies and latencies at which brain responses are most discriminative. For sounds that the subjects could not categorize, we could successfully decode the semantic category based on differences in voltage topographies during the 116-174ms post-stimulus period. Sounds that were correctly categorized as that of a living or man-made item by the same subjects exhibited two periods of differences in voltage topographies at the single-trial level. Subjects exhibited differential activity before the sound ended (starting at 112ms) and on a separate period at ~270ms post-stimulus onset. Because each of these periods could be used to reliably decode semantic categories, we interpreted the first as being related to an implicit tuning for sound representations and the second as being linked to perceptual decision-making processes. Collectively, our results show that the brain discriminates environmental sounds during early stages and independently of behavioral proficiency and that explicit sound categorization requires a subsequent processing stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: An auditory perceptual learning paradigm was used to investigate whether implicit memories are formed during general anesthesia. METHODS: Eighty-seven patients who had an American Society of Anesthesiologists physical status of I-III and were scheduled to undergo an elective surgery with general anesthesia were randomly assigned to one of two groups. One group received auditory stimulation during surgery, whereas the other did not. The auditory stimulation consisted of pure tones presented via headphones. The Bispectral Index level was maintained between 40 and 50 during surgery. To assess learning, patients performed an auditory frequency discrimination task after surgery, and comparisons were made between the groups. General anesthesia was induced with thiopental and maintained with a mixture of fentanyl and sevoflurane. RESULTS: There was no difference in the amount of learning between the two groups (mean +/- SD improvement: stimulated patients 9.2 +/- 11.3 Hz, controls 9.4 +/- 14.1 Hz). There was also no difference in initial thresholds (mean +/- SD initial thresholds: stimulated patients 31.1 +/- 33.4 Hz, controls 28.4 +/- 34.2 Hz). These results suggest that perceptual learning was not induced during anesthesia. No correlation between the bispectral index and the initial level of performance was found (Pearson r = -0.09, P = 0.59). CONCLUSION: Perceptual learning was not induced by repetitive auditory stimulation during anesthesia. This result may indicate that perceptual learning requires top-down processing, which is suppressed by the anesthetic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and aim of the study: Formation of implicit memory during general anaesthesia is still debated. Perceptual learning is the ability to learn to perceive. In this study, an auditory perceptual learning paradigm, using frequency discrimination, was performed to investigate the implicit memory. It was hypothesized that auditory stimulation would successfully induce perceptual learning. Thus, initial thresholds of the frequency discrimination postoperative task should be lower for the stimulated group (group S) compared to the control group (group C). Material and method: Eighty-seven patients ASA I-III undergoing visceral and orthopaedic surgery during general anaesthesia lasting more than 60 minutes were recruited. The anaesthesia procedure was standardized (BISR monitoring included). Group S received auditory stimulation (2000 pure tones applied for 45 minutes) during the surgery. Twenty-four hours after the operation, both groups performed ten blocks of the frequency discrimination task. Mean of the thresholds for the first three blocks (T1) were compared between groups. Results: Mean age and BIS value of group S and group C are respectively 40 } 11 vs 42 } 11 years (p = 0,49) and 42 } 6 vs 41 } 8 (p = 0.87). T1 is respectively 31 } 33 vs 28 } 34 (p = 0.72) in group S and C. Conclusion: In our study, no implicit memory during general anaesthesia was demonstrated. This may be explained by a modulation of the auditory evoked potentials caused by the anaesthesia, or by an insufficient longer time of repetitive stimulation to induce perceptual learning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

When speech is degraded, word report is higher for semantically coherent sentences (e.g., her new skirt was made of denim) than for anomalous sentences (e.g., her good slope was done in carrot). Such increased intelligibility is often described as resulting from "top-down" processes, reflecting an assumption that higher-level (semantic) neural processes support lower-level (perceptual) mechanisms. We used time-resolved sparse fMRI to test for top-down neural mechanisms, measuring activity while participants heard coherent and anomalous sentences presented in speech envelope/spectrum noise at varying signal-to-noise ratios (SNR). The timing of BOLD responses to more intelligible speech provides evidence of hierarchical organization, with earlier responses in peri-auditory regions of the posterior superior temporal gyrus than in more distant temporal and frontal regions. Despite Sentence content × SNR interactions in the superior temporal gyrus, prefrontal regions respond after auditory/perceptual regions. Although we cannot rule out top-down effects, this pattern is more compatible with a purely feedforward or bottom-up account, in which the results of lower-level perceptual processing are passed to inferior frontal regions. Behavioral and neural evidence that sentence content influences perception of degraded speech does not necessarily imply "top-down" neural processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Photopsias are unformed luminous spontaneous visual hallucinations, often described as flickering or wiggling lights, sometimes like a glare. Phosphenes are more intense and of shorter duration whereas migraine fortifications have a specific time course and succession of events. Recognition of this symptom is often poor, hence patients are wrongly investigated. PURPOSE: To describe the clinical presentation and electroretinographic characteristics of patients with photopsias. METHODS: 4 patients were worked-up with clinical, psychophysical, angiographic and electroretinographic examinations. RESULTS: Despite normal fundus and angiographic examinations, full-field electroretinogram was diagnostic in all cases. Retinal dysfunction involved either inner or outer retina. Paraneoplastic, and probable autoimmune/inflammatory retinopathies were found in our cases. CONCLUSION: Photopsias are often secondary to sick retinal cells. In the presence of photopsias, investigations should be directed towards the retina and electroretinography is the gold standard. Recognition of the symptom should prevent useless and potentially harmful investigations for the patient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In humans, touching the skin is known to activate, among others, the contralateral primary somatosensory cortex on the postcentral gyrus together with the bilateral parietal operculum (i.e. the anatomical site of the secondary somatosensory cortex). But which brain regions beyond the postcentral gyrus specifically contribute to the perception of touch remains speculative. In this study we collected structural magnetic resonance imaging scans and neurological examination reports of patients with brain injuries or stroke in the left or right hemisphere, but not in the postcentral gyrus as the entry site of cortical somatosensory processing. Using voxel-based lesion-symptom mapping, we compared patients with impaired touch perception (i.e. hypoaesthesia) to patients without such touch impairments. Patients with hypoaesthesia as compared to control patients differed in one single brain cluster comprising the contralateral parietal operculum together with the anterior and posterior insular cortex, the putamen, as well as subcortical white matter connections reaching ventrally towards prefrontal structures. This finding confirms previous speculations on the 'ventral pathway of somatosensory perception' and causally links these brain structures to the perception of touch.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A case is described of a patient who presented almost simultaneously the impression that his left arm was amputated and the feeling of the presence of his invisible Doppelgänger. While these body scheme disorders have both been described after (right) parietal lesions, a right frontal opercular ischaemic stroke was found in the neurological work up. Diffusion tensor imaging showed that the stroke involved the ventral bundle of the superior longitudinal fasciculus that connects the parietal to the frontal lobe. The unusual clinical presentation of this frontal lesion may have been due to a 'diaschisis'-like phenomenon via the superior longitudinal fasciculus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent findings suggest that the visuo-spatial sketchpad (VSSP) may be divided into two sub-components processing dynamic or static visual information. This model may be useful to elucidate the confusion of data concerning the functioning of the VSSP in schizophrenia. The present study examined patients with schizophrenia and matched controls in a new working memory paradigm involving dynamic (the Ball Flight Task - BFT) or static (the Static Pattern Task - SPT) visual stimuli. In the BFT, the responses of the patients were apparently based on the retention of the last set of segments of the perceived trajectory, whereas control subjects relied on a more global strategy. We assume that the patients' performances are the result of a reduced capacity in chunking visual information since they relied mainly on the retention of the last set of segments. This assumption is confirmed by the poor performance of the patients in the static task (SPT), which requires a combination of stimulus components into object representations. We assume that the static/dynamic distinction may help us to understand the VSSP deficits in schizophrenia. This distinction also raises questions about the hypothesis that visuo-spatial working memory can simply be dissociated into visual and spatial sub-components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To identify a distinctive chronic visual complication of lysergic acid diethylamide (LSD) use. DESIGN: Description of the clinical findings in three patients with this disorder. SETTING: A neuro-ophthalmology referral center. RESULTS: All three patients experienced prolonged afterimages (palinopsia) during LSD intoxication and have continued to be symptomatic up to 3 years after they ceased to ingest the drug. Results of neuro-ophthalmologic and neurologic examinations and neuroimaging and electrophysiologic studies were normal. CONCLUSIONS: We have described three patients in whom persistent palinopsia developed following ingestion of LSD. Clinicians should inquire about past LSD use in all patients who initially have seemingly spontaneous, isolated palinopsia. Recognition of this distinctive clinical syndrome associated with LSD use might avoid unnecessary anxiety and excessive diagnostic tests for patients with this disorder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RÉSUMÉ Plusieurs auteurs ont étudié la perception en fonction de la psychopathologie. Dans cette optique, Borgeat, David, Saucier et Dumont en 1994 et Borgeat, Sauvageau, David et Saucier en 1997 ont utilisé la méthode tachistoscopique afin de comparer, dans une étude prospective, la perception de stimuli émotionnels entre des femmes souffrant d'une dépression du post- partum et des femmes non atteintes. Par ailleurs, des études antérieures, notamment les travaux de MacLeod et Rutherford en 1992, avaient montré la possibilité d'un processus de perception différent entre sujets anxieux et non anxieux. L'étude actuelle pose l'hypothèse d'une interaction entre caractéristiques du stimulus et trouble anxieux du sujet. Cette hypothèse suppose donc un processus préconscient de l'information, avec analyse sémantique de cette dernière, à même d'influencer (inhiber ou faciliter) la perception de certains stimuli en fonction de leur charge affective. L'étude que nous présentons a pour but d'évaluer la perception de stimuli anxiogènes chez les patients atteints de troubles anxieux, et plus particulièrement chez des sujets souffrant d'attaque de panique et de troubles obsessionnels-compulsifs. A cette fin, nous avons choisi, contrairement à la plupart des études effectuées jusqu'à présent où la méthode Stroop avait été utilisée, la technique tachistoscopique qui, à notre avis, permet une mesure plus directe de la rapidité du processus perceptuel. Ainsi, trois groupes de sujets ont pris part à l'étude : un groupe contrôle (N = 22), un groupe de patients souffrant d'attaques de panique (N = 21) et un groupe de patients atteints de troubles obsessionnels-compulsifs (N = 20). Ces 63 sujets, âgés entre 18 et 60 ans, ont à la fois répondu au Fear Questionnaire ainsi qu'au Questionnaire Beck 13 pour la dépression et procédé à la reconnaissance de 42 mots (six groupes de sept mots) présentés aléatoirement à l'ordinateur, en cycles successifs de 15 millisecondes. Cinq parmi les six groupes de mots se référaient à un trouble anxieux spécifique, le sixième étant considéré comme un groupe de mots « neutres ». Le temps, en millisecondes, nécessaire à la reconnaissance de chaque mot a été enregistré. Les résultats montrent une lenteur de la part des patients souffrant d'attaques de panique pour la reconnaissance de tous les stimuli par rapport aux sujets contrôle, avec une performance intermédiaire entre les deux groupes pour les patients atteints de troubles obsessionnels-compulsifs. De plus, l'analyse statistique a révélé deux effets d'interaction : les patients atteints d'attaques de panique sont plus rapides à reconnaître le groupe de mots en rapport avec leur angoisse, de même que les patients soufflant de troubles obsessionnels- compulsifs ont un temps moyen de reconnaissance des mots en rapport avec leur trouble plus bas que prévu. Ces résultats amènent à une double conclusion. La première est que les patients anxieux manifestent une défense perceptuelle globale face aux stimuli anxiogènes en général, et que cette défense est plus marquée chez les patients atteints d'attaques de panique que chez les sujets souffrant de troubles obsessionnels-compulsifs. La deuxième est que ces mêmes patients, confrontés à des stimuli en rapport avec leur propre angoisse, montrent une vigilance accrue. Ainsi, ces données évoquent une double stratégie de traitement de l'information chez les patients anxieux : un évitement perceptuel général face à l'information émotionnellement chargée, et un traitement sélectif de l'information ayant un rapport direct avec l'angoisse dont ils soufflent. SUMMARY Prior research by MacLeod and Rutherford (1992) indicates that anxious subjects could have perceptual strategies different from nonanxious subjects. 42 verbal stimuli of six types (disease, social anxiety, panic, agoraphobia, obsessive-compulsive, and neutral) were tachistoscopically presented to three groups of subjects, aged 18 to 60 years: Panic Disorder group (n =21: 13 women and 8 men), and Obsessive-Compulsive Disorder group (n=20: 14 women and 6 men), recruited from an outpatient clinic, and a Control group (n=22: 14 women and 8 men), recruited among students and hospital staff. The times required for correct identification were generally longer for anxious subjects but quicker for stimuli specifically related to their disorder. The data could indicate a two-step perceptual strategy or two distinct ways of perceiving, usually, a generalized perceptual defense for a majority of anxiety-loaded stimuli, but also a selectively facilitated processing for stimuli specific to the disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sound localization relies on the analysis of interaural time and intensity differences, as well as attenuation patterns by the outer ear. We investigated the relative contributions of interaural time and intensity difference cues to sound localization by testing 60 healthy subjects: 25 with focal left and 25 with focal right hemispheric brain damage. Group and single-case behavioural analyses, as well as anatomo-clinical correlations, confirmed that deficits were more frequent and much more severe after right than left hemispheric lesions and for the processing of interaural time than intensity difference cues. For spatial processing based on interaural time difference cues, different error types were evident in the individual data. Deficits in discriminating between neighbouring positions occurred in both hemispaces after focal right hemispheric brain damage, but were restricted to the contralesional hemispace after focal left hemispheric brain damage. Alloacusis (perceptual shifts across the midline) occurred only after focal right hemispheric brain damage and was associated with minor or severe deficits in position discrimination. During spatial processing based on interaural intensity cues, deficits were less severe in the right hemispheric brain damage than left hemispheric brain damage group and no alloacusis occurred. These results, matched to anatomical data, suggest the existence of a binaural sound localization system predominantly based on interaural time difference cues and primarily supported by the right hemisphere. More generally, our data suggest that two distinct mechanisms contribute to: (i) the precise computation of spatial coordinates allowing spatial comparison within the contralateral hemispace for the left hemisphere and the whole space for the right hemisphere; and (ii) the building up of global auditory spatial representations in right temporo-parietal cortices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : GABA, the primary inhibitory neurotransmitter, and its receptors play an important role in modulating neuronal activity in the central nervous system and are implicated in many neurological disorders. In this study, GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas TC (= primary auditory area), TB, and TA. Both hemispheres from nine neurologically normal subjects and from four patients with subacute or chronic stroke were included. In normal brains, GABAA receptor subunit (α1, α2, & β2/3) labeling produced neuropil staining throughout all cortical layers as well as labeling fibers and neurons in layer VI for all auditory areas. Densitometry profiles displayed differences in GABAA subunit expression between primary and non-primary areas. In contrast to the neuropil labeling of GABAA subunits, GABAB1 and GABAB2 subunit immunoreactivity was revealed on neuronal somata and proximal dendritic shafts of pyramidal and non-pyramidal neurons in layers II-III, more strongly on supra- than in infragranular layers. No differences were observed between auditory areas. In stroke cases, we observed a downregulation of the GABAA receptor α2 subunit in granular and infragranular layers, while the other GABAA and the two GABAB receptor subunits remained unchanged. Our results demonstrate a strong presence of GABAA and GABAB receptors in the human auditory cortex, suggesting a crucial role of GABA in shaping auditory responses in the primary and non-primary auditory areas. The differential laminar and area expression of GABAA subunits that we have found in the auditory areas and which is partially different from that in other cortical areas speaks in favor of a fine turning of GABA-ergic transmission in these different compartments. In contrast, GABAB expression displayed laminar, but not areal differences; its basic pattern was also very similar to that of other cortical areas, suggesting a more uniform role within the cerebral cortex. In subacute and chronic stroke, the selective GABAA α2 subunit downregulation is likely to influence postlesional plasticity and susceptibility to medication. The absence of changes in the GABAB receptors suggests different regulation than in other pathological conditions, such as epilepsy, schizophrenia or bipolar disorder, in which a downregulation has been reported. Résumé : GABA, le principal neurotransmetteur inhibiteur, et ses récepteurs jouent un rôle important en tant que modulateur de l'activité neuronale dans le système nerveux central et sont impliqués dans de nombreux désordres neurologiques. Dans cette étude, l'expression des sous-unités des récepteur GABAA et GABAB a été visualisée par immunohistochimie dans les aires auditives du cortex humains: le TC (= aire auditif primaire), le TB, et le TA. Les deux hémisphères de neuf sujets considérés normaux du point de vue neurologique et de quatre patients ayant subis un accident cérébro-vasculaire et se trouvant dans la phase subaiguë ou chronique étaient inclues. Dans les cerveaux normaux, les immunohistochimies contre les sous-unités α1, α2, & β2/3 du récepteur GABAA ont marqué le neuropil dans toutes les couches corticales ainsi que les fibres et les neurones de la couche VI dans toutes les aires auditives. Le profile densitométrique montre des différences dans l'expression des sous-unités du récepteur GABAA entre les aires primaires et non-primaires. Contrairement au marquage de neuropil par les sous-unités du recepteur GABAA, 1'immunoréactivité des sous-unités GABAB1 et GABAB2 a été révélée sur les corps cellulaires neuronaux et les dendrites proximaux des neurones pyramidaux et non-pyramidaux dans les couches II-III et est plus dense dans les couches supragranulaires que dans les couches infragranulaires. Aucune différence n'a été observée entre les aires auditives. Dans des cas lésionnels, nous avons observé une diminution de la sous-unité α2 du récepteur GABAA dans les couches granulaires et infragranulaires, alors que le marquage des autres sous-unités du récepteur GABAA et des deux sous-unités de récepteur GABAB reste inchangé. Nos résultats démontrent une présence forte des récepteurs GABAA et GABAB dans le cortex auditif humain, suggérant un rôle crucial du neurotransmetteur GABA dans la formation de la réponse auditive dans les aires auditives primaires et non-primaires. L'expression différentielle des sous-unités de GABAA entre les couches corticales et entre les aires auditives et qui est partiellement différente de celle observée dans d'autres aires corticales préconise une modulation fine de la transmission GABA-ergic en ces différents compartiments. En revanche, l'expression de GABAB a montré des différences laminaires, mais non régionales ; son motif d'expression de base est également très semblable à celui d'autres aires corticales, suggérant un rôle plus uniforme dans le cortex cérébral. Dans les phases subaiguë et chronique des accidents cérébro-vasculaires, la diminution sélective de la sous-unité α2 du recepteur GABAA est susceptible d'influencer la plasticité et la susceptibilité postlésionnelle au médicament. L'absence de changement pour les récepteurs GABAB suggère que le récepteur est régulé différemment après un accident cerebro-vasculaire par rapport à d'autres conditions pathologiques, telles que l'épilepsie, la schizophrénie ou le désordre bipolaire, dans lesquels une diminution de ces sous-unités a été rapportée.