25 resultados para Atomic weights.
em Université de Lausanne, Switzerland
Resumo:
Loss of T-tubules (TT), sarcolemmal invaginations of cardiomyocytes (CMs), was recently identified as a general heart failure (HF) hallmark. However, whether TT per se or the overall sarcolemma is altered during HF process is still unknown. In this study, we directly examined sarcolemmal surface topography and physical properties using Atomic Force Microscopy (AFM) in living CMs from healthy and failing mice hearts. We confirmed the presence of highly organized crests and hollows along myofilaments in isolated healthy CMs. Sarcolemma topography was tightly correlated with elasticity, with crests stiffer than hollows and related to the presence of few packed subsarcolemmal mitochondria (SSM) as evidenced by electron microscopy. Three days after myocardial infarction (MI), CMs already exhibit an overall sarcolemma disorganization with general loss of crests topography thus becoming smooth and correlating with a decreased elasticity while interfibrillar mitochondria (IFM), myofilaments alignment and TT network were unaltered. End-stage post-ischemic condition (15days post-MI) exacerbates overall sarcolemma disorganization with, in addition to general loss of crest/hollow periodicity, a significant increase of cell surface stiffness. Strikingly, electron microscopy revealed the total depletion of SSM while some IFM heaps could be visualized beneath the membrane. Accordingly, mitochondrial Ca(2+) studies showed a heterogeneous pattern between SSM and IFM in healthy CMs which disappeared in HF. In vitro, formamide-induced sarcolemmal stress on healthy CMs phenocopied post-ischemic kinetics abnormalities and revealed initial SSM death and crest/hollow disorganization followed by IFM later disarray which moved toward the cell surface and structured heaps correlating with TT loss. This study demonstrates that the loss of crest/hollow organization of CM surface in HF occurs early and precedes disruption of the TT network. It also highlights a general stiffness increased of the CM surface most likely related to atypical IFM heaps while SSM died during HF process. Overall, these results indicate that initial sarcolemmal stress leading to SSM death could underlie subsequent TT disarray and HF setting.
Resumo:
Type II topoisomerases (Topo II) are unique enzymes that change the DNA topology by catalyzing the passage of two double-strands across each other by using the energy from ATP hydrolysis. In vitro, human Topo II relaxes positive supercoiled DNA around 10-fold faster than negative supercoiled DNA. By using atomic force microscopy (AFM) we found that human Topo II binds preferentially to DNA cross-overs. Around 50% of the DNA crossings, where Topo II was bound to, presented an angle in the range of 80-90°, suggesting a favored binding geometry in the chiral discrimination by Topo II. Our studies with AFM also helped us visualize the dynamics of the unknotting action of Topo II in knotted molecules.
Resumo:
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells.
Resumo:
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Resumo:
Atomic force microscope is an invaluable device to explore living specimens at a nanometric scale. It permits to image the topography of the sample in 3D, to measure its mechanical properties and to detect the presence of specific molecules bound on its surface. Here we describe the procedure to gather such a data set on living macrophages.
Resumo:
Atomic force microscopy (AFM) in situ has been used to observe the cold disassembly dynamics of microtubules at a previously unrealised spatial resolution. Microtubules either electrostatically or covalently bound to aminosilane surfaces disassembled at room temperature under buffer solutions with no free tubulin present. This process was followed by taking sequential tapping-mode AFM images and measuring the change in the microtubule end position as a function of time, with an spatial accuracy down to +/-20nm and a temporal accuracy of +/-1s. As well as giving average disassembly rates on the order of 1-10 tubulin monomers per second, large fluctuations in the disassembly rate were revealed, indicating that the process is far from smooth and linear under these experimental conditions. The surface bound rates measured here are comparable to the rates for GMPCPP-tubulin microtubules free in solution, suggesting that inhibition of tubulin curvature through steric hindrance controls the average, relatively low disassembly rate. The large fluctuations in this rate are thought to be due to multiple pathways in the kinetics of disassembly with differing rate constants and/or stalling due to defects in the microtubule lattice. Microtubules that were covalently bound to the surface left behind the protofilaments covalently cross-linked to the aminosilane via glutaraldehyde during the disassembly process. Further work is needed to quantitatively assess the effects of surface binding on protofibril disassembly rates, reveal any differences in disassembly rates between the plus and minus ends and to enable assembly as well as disassembly to be imaged in the microscope fluid cell in real-time.
Resumo:
AIM: Atomic force microscopy nanoindentation of myofibers was used to assess and quantitatively diagnose muscular dystrophies from human patients. MATERIALS & METHODS: Myofibers were probed from fresh or frozen muscle biopsies from human dystrophic patients and healthy volunteers, as well as mice models, and Young's modulus stiffness values were determined. RESULTS: Fibers displaying abnormally low mechanical stability were detected in biopsies from patients affected by 11 distinct muscle diseases, and Young's modulus values were commensurate to the severity of the disease. Abnormal myofiber resistance was also observed from consulting patients whose muscle condition could not be detected or unambiguously diagnosed otherwise. DISCUSSION & CONCLUSION: This study provides a proof-of-concept that atomic force microscopy yields a quantitative read-out of human muscle function from clinical biopsies, and that it may thereby complement current muscular dystrophy diagnosis.
Resumo:
Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.
Resumo:
BACKGROUND: Knowledge of normal heart weight ranges is important information for pathologists. Comparing the measured heart weight to reference values is one of the key elements used to determine if the heart is pathological, as heart weight increases in many cardiac pathologies. The current reference tables are old and in need of an update. AIMS: The purposes of this study are to establish new reference tables for normal heart weights in the local population and to determine the best predictive factor for normal heart weight. We also aim to provide technical support to calculate the predictive normal heart weight. METHODS: The reference values are based on retrospective analysis of adult Caucasian autopsy cases without any obvious pathology that were collected at the University Centre of Legal Medicine in Lausanne from 2007 to 2011. We selected 288 cases. The mean age was 39.2 years. There were 118 men and 170 women. Regression analyses were performed to assess the relationship of heart weight to body weight, body height, body mass index (BMI) and body surface area (BSA). RESULTS: The heart weight increased along with an increase in all the parameters studied. The mean heart weight was greater in men than in women at a similar body weight. BSA was determined to be the best predictor for normal heart weight. New reference tables for predicted heart weights are presented as a web application that enable the comparison of heart weights observed at autopsy with the reference values. CONCLUSIONS: The reference tables for heart weight and other organs should be systematically updated and adapted for the local population. Web access and smartphone applications for the predicted heart weight represent important investigational tools.
Resumo:
OBJECTIVE. Data on human natality, stillbirth and perinatal mortality from Switzerland (1979-1987), available in four birthweight categories, are reexamined to assess any about-weekly (circaseptan) and changes in about-daily (circadian) patterns in central Europe over a century and a halfDESIGN. Retrospective analyses on archived data.SETTING. Federal Office of Statistics for Switzerland.RESULTS. In addition to prominent circadians, weekly patterns are also documented.CONCLUSION. Exogenous variations, prominent in early extrauterine life, such as changes of scheduling in obstetrics, may contribute to circadian and cireaseptan natality patterns. Information on these patterns serves in the optimization of neonatal care. Partly endogenous, partly physical environmental aspects, at least of about-weekly patterns, remain to be elucidated in series consisting exclusively of spontaneous parturitions.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
Exchange matrices represent spatial weights as symmetric probability distributions on pairs of regions, whose margins yield regional weights, generally well-specified and known in most contexts. This contribution proposes a mechanism for constructing exchange matrices, derived from quite general symmetric proximity matrices, in such a way that the margin of the exchange matrix coincides with the regional weights. Exchange matrices generate in turn diffusive squared Euclidean dissimilarities, measuring spatial remoteness between pairs of regions. Unweighted and weighted spatial frameworks are reviewed and compared, regarding in particular their impact on permutation and normal tests of spatial autocorrelation. Applications include tests of spatial autocorrelation with diagonal weights, factorial visualization of the network of regions, multivariate generalizations of Moran's I, as well as "landscape clustering", aimed at creating regional aggregates both spatially contiguous and endowed with similar features.