62 resultados para Ataxia-telangiectasia Atm
em Université de Lausanne, Switzerland
Resumo:
Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.
Resumo:
Les phacomatoses regroupent des maladies du développement du neurectoderme, engendrant des manifestations cutanées ou du système nerveux central. Les symptômes de ces maladies peuvent affecter les individus atteints à différents moments de leur vie. Il s'agit de maladies, héréditaires ou congénitales, qui sont transmises de façon variable. Effectivement, certaines, telles que la neurofibromatose, la sclérose tubéreuse ou la maladie de von Hippel-Lindau sont autosomiques dominantes, alors que d'autres, telles que la maladie de Sturge-Weber sont sporadiques. Des transmissions autosomiques récessives liées à X ou des formes mosaïques existent également. Une revue de la littérature, comprenant les cinq phacomatoses les plus fréquemment vues par un neurochirurgien (neurofibromatose de type I et II, sclérose tubéreuse de Bourneville, maladie de Sturge-Weber-Krabbe, maladie de von Hippel-Lindau) a été effectuée en se centrant sur le diagnostic, la variabilité de la symptomatologie selon l'âge du patient et son traitement. Les cas de patients adultes et pédiatriques vus aux consultations de neurologie et neurochirurgie de l'hôpital de Lille (France) et Lausanne (Suisse), de 1961 à nos jours, ont été revus pour illustrer les différentes pathologies rencontrées, selon l'âge des patients atteints. Le phénotype de ces maladies se modifie avec l'âge, car les gènes incriminés sont des gènes impliqués dans la différentiation tissulaire et sont activés à des âges différents suivant les tissus. Le rôle du neurochirurgien sera variable selon l'âge et le syndrome du patient. Il importe de connaître les variations du phénotype de ces maladies avec l'âge ainsi que les conséquences à long terme des traitements pour proposer au patient un suivi neurochirurgical personnalisé. Phacomatoses, or neurocutaneous disorders, are a group of congenital and hereditary diseases characterized by developmental lesions of the neuroectoderm, leading to pathologies affecting the skin and the central nervous system. There is a wide range of pathologies affecting individuals at different moments of life. The genetics is variable: while neurofibromatosis 1 and 2, tuberous sclerosis and von Hippel-Lindau disease are all inherited as autosomal dominant traits, Sturge-Weber syndrome is sporadic. Other neurocutaneous disorders can be inherited as autosomal recessive traits (i.e., ataxia-telangiectasia), X-linked (i.e., incontinentia pigmenti) or explained by mosaicism (i.e., hypomelanosis of Ito, McCune-Albright syndrome). In this review, we discuss the major types of neurocutaneous disorders most frequently encountered by the neurosurgeon and followed beyond childhood. They include neurofibromatosis types 1 and 2, tuberous sclerosis, Sturge-Weber syndrome and von Hippel-Lindau disease. In each case, a review of the literature, including diagnosis, genetics and treatment will be presented. The lifespan of the disease with the implications for neurosurgeons will be emphasized. A review of cases, including both pediatric and adult patients, seen in neurosurgical practices in the Lille, France and Lausanne, Switzerland hospitals between 1961 and 2007 is presented to illustrate the pathologies seen in different age-groups. Because the genes mutated in most phacomatoses are involved in development and are activated following a timed schedule, the phenotype of these diseases evolves with age. The implication of the neurosurgeon varies depending on the patient's age and pathology. While neurosurgeons tend to see pediatric patients affected with neurofibromatosis type 1, tuberous sclerosis and Sturge-Weber syndrome, there will be a majority of adult patients with von Hippel-Lindau disease or neurofibromatosis type 2
Resumo:
Three phosphatidylinositol-3-kinase-related protein kinases implement cellular responses to DNA damage. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated respond primarily to DNA double-strand breaks (DSBs). Ataxia-telangiectasia and RAD3-related (ATR) signals the accumulation of replication protein A (RPA)-covered single-stranded DNA (ssDNA), which is caused by replication obstacles. Stalled replication intermediates can further degenerate and yield replication-associated DSBs. In this paper, we show that the juxtaposition of a double-stranded DNA end and a short ssDNA gap triggered robust activation of endogenous ATR and Chk1 in human cell-free extracts. This DNA damage signal depended on DNA-PKcs and ATR, which congregated onto gapped linear duplex DNA. DNA-PKcs primed ATR/Chk1 activation through DNA structure-specific phosphorylation of RPA32 and TopBP1. The synergistic activation of DNA-PKcs and ATR suggests that the two kinases combine to mount a prompt and specific response to replication-born DSBs.
Resumo:
Proteins disabled in Fanconi anemia (FA) are necessary for the maintenance of genome stability during cell proliferation. Upon replication stress signaling by ATR, the FA core complex monoubiquitinates FANCD2 and FANCI in order to activate DNA repair. Here, we identified FANCD2 and FANCI in a proteomic screen of replisome-associated factors bound to nascent DNA in response to replication arrest. We found that FANCD2 can interact directly with minichromosome maintenance (MCM) proteins. ATR signaling promoted the transient association of endogenous FANCD2 with the MCM2-MCM7 replicative helicase independently of FANCD2 monoubiquitination. FANCD2 was necessary for human primary cells to restrain DNA synthesis in the presence of a reduced pool of nucleotides and prevented the accumulation of single-stranded DNA, the induction of p21, and the entry of cells into senescence. These data reveal that FANCD2 is an effector of ATR signaling implicated in a general replisome surveillance mechanism that is necessary for sustaining cell proliferation and attenuating carcinogenesis.
Resumo:
The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR) in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.
Resumo:
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder-the cerebellum-and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame-6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.
Resumo:
Purpose: To report a novel maculopathy in a patient with SCA1. To describe autofluorescence findings in family with SCA7 and associated cone-rod retinal dysfunction.Methods: 4 affected patients from two families were assessed to investigate a progressive loss of visual acuity (VA). Examinations included fundus photography, autofluorescence (AF) fundus fluorescein angiogragraphy (FFA) and optical coherence tomography. Electroretinogram (full-field) was performed in 2 affected patients. All patients had color vision testing using Ishihara pseudoisochromatic plates. Molecular analysis was performed in family 2.Results: The patient with known diagnosis of SCA1 had a visual acuity of 20/200 bilaterally and dyschromatopsia. He had saccadic pursuit. Fundus examination showed mild retinal pigment epithelium (RPE) changes at the macula. OCT showed bilateral macular serous detachment, which was not obvious at the FFA and explained his VA. AF imaging showed a central hyperfluorescence. The 45 year old proband from family 2 had a visual acuity of 200/20 and dyschromatopsia. ERG testing showed cone type dysfunction of photoreceptors. Her daughter affected at a younger age had the same ERGs findings. Fundus examination showed mild RPE changes in proband, normal findings in her daughter. AF imaging of both patients showed a ring of high density AF around the fovea. The ring was also obvious on near infrared AF. Later onset of gait imbalance led to the diagnosis of SCA7Conclusions: Within the group of spinocerebellar ataxias, only the type 7 is associated with retinal dysfunction. We present the first report of maculopathy associated with SCA1 causing severe vision loss. The ring of high density AF in SCA7 confirmed an early retinal photoreceptor dysfunction in patient with normal fundus.
Resumo:
Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset movement disorder affecting FMR1 premutation carriers, is associated with cerebral and cerebellar lesions. The aim of this study was to test whether computational anatomy can detect similar patterns in asymptomatic FMR1 premutation carriers (mean age 46.7 years) with qualitatively normal -appearing grey and white matter on brain MRI. We used a multimodal imaging protocol to characterize brain anatomy by automated assessment of gray matter volume and white matter properties. Structural changes in the hippocampus and in the cerebellar motor network with decreased gray matter volume in lobule VI and white matter alterations of the corresponding afferent projections through the middle cerebellar peduncles are demonstrated. Diffuse subcortical white matter changes in both hemispheres, without corresponding gray matter alterations, are only identified through age × group interactions. We interpret the hippocampal fimbria and cerebellar changes as early alterations with a possible neurodevelopmental origin. In contrast, progression of the diffuse cerebral hemispheric white matter changes suggests a neurodegenerative process, leading to late-onset lesions, which may mark the imminent onset of FXTAS.
Resumo:
Background: Pulmonary arteriovenous malformations (PAVMs) due to hereditaryhemorrhagic telangiectases (HHT) is associated with paradoxical strokes, brainabcesses, and increased prevalence of migraines. We report a patient in whom wefound a relationship between PAMVs and a reduction in frequency of migrainewith aura after the treatment of the first pulmonary malformation.Patient and methods: A 67-year-old woman developed migraine with visual auraand major epistaxis during childhood. A PAVM is discovered and surgically removedin 1969. Migraines nearly disappeared during several years, after which theystarted to reappear progressively. A HHT syndrome is diagnosed based on recurrentepistaxis, the development of cutaneous telangiectases and a positive family history.She suffered a left subcortical stroke in 2008. Perfusion CT, chest radiography,thoracic CT-angiography, contrast echocardiography, contrast transcranial Dopplerand cerebral MRI were performed.Results: Perfusion CT showed previous asymptomatic strokes in cerebellum andbasal ganglia. 4 PAMVs were confirmed on the chest x-ray whose structural conformationis identified on thoracic CT. Contrast echocardiography and transcranialDoppler showed a massive right to left shunt. It is planned to embolize the 4PAVMs, and migraine frequency will now be prospectively assessed.Conclusion: This patient with a pulmonary arteriovenous malformation showeda reduced migraine frequency after resection of her lung lesion. This suggests acausal relationship between a right to left shunt and migraine, as discussed inpatients with patent foramen ovale.
Resumo:
Friedreich's ataxia (FRDA), the most common autosomal recessive ataxia, is characterised by progressive ataxia with dysarthria of speech, loss of deep-tendon reflexes, impaired vibratory and proprioceptive sensations and corticospinal weakness with a Babinski's sign. Patients eventually also develop kyphoscoliosis, cardiomyopathy and diabetes mellitus. The disease is a GAA repeat disorder resulting in severely reduced levels of frataxin, with secondary increased sensitivity to oxidative stress. The anti-oxidative drug, idebenone, is effective against FRDA-associated cardiomyopathy. We provide detailed clinical, electrophysiological and biochemical data from 20 genetically confirmed FRDA patients and have analysed the relationship between phenotype, genotype and malondialdehyde (MDA), which is a marker of superoxide formation. We assessed the effects of idebenone biochemically by measuring blood MDA and clinically by serial measurements of the International Cooperative Ataxia Rating Scale (ICARS). The GAA repeat length influenced the age at onset (p <0.001), the severity of ataxia (p = 0.02), the presence of cardiomyopathy (p = 0.04) and of low-frequency hearing loss (p = 0.009). Multilinear regression analysis showed (p = 0.006) that ICARS was dependent on the two variables of disease duration (p = 0.01) and size of the GAA expansion (p = 0.02). We found no correlation to bilateral palpebral ptosis, visual impairment, diabetes mellitus or skeletal deformities, all of which appear to be signs of disease progression rather than severity. We discuss more thoroughly two underrecognised clinical findings: palpebral ptosis and GAA length-dependent low-frequency hearing loss. The average ICARS remained unchanged in 10 patients for whom follow-up on treatment was available (mean 2.9 years), whereas most patients treated with idebenone reported an improvement in dysarthria (63%), hand dexterity (58%) and fatigue (47%) after taking the drug for several weeks or months. Oxidative stress analysis showed an unexpected increase in blood MDA levels in patients on idebenone (p = 0.04), and we discuss the putative underlying mechanism for this result, which could then explain the unique efficacy of idebenone in treating the FRDA-associated cardiomyopathy, as opposed to other antioxidative drugs. Indeed, idebenone is not only a powerful stimulator of complexes II and III of the respiratory chain, but also an inhibitor of complex I activity, then promoting superoxide formation. Our preliminary clinical observations are the first to date supporting an effect of idebenone in delaying neurological worsening. Our MDA results point to the dual effect of idebenone on oxidative stress and to the need for controlled studies to assess its potential toxicity at high doses on the one hand, and to revisit the exact mechanisms underlying the physiopathology of Friedreich's ataxia on the other hand, while recent reports suggest non-oxidative pathophysiology of the disease.
Resumo:
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.
Resumo:
Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, is regulated at the PIDD platform. We show that the PIDDosome functions in the "Chk1-suppressed" apoptotic response to DNA damage, a conserved ATM/ATR-caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and engages prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.
Resumo:
Background. Efficient therapy for both limb and gait ataxia is required. Climbing, a complex task for the whole motor system involving balance, body stabilization, and the simultaneous coordination of all 4 limbs, may have therapeutic potential. Objective. To investigate whether long-term climbing training improves motor function in patients with cerebellar ataxia. Methods. Four patients suffering from limb and gait ataxia underwent a 6-week climbing training. Its effect on ataxia was evaluated with validated clinical balance and manual dexterity tests and with a kinematic analysis of multijoint arm and leg pointing movements. Results. The patients increased their movement velocity and achieved a more symmetric movement speed profile in both arm and leg pointing movements. Furthermore, the 2 patients who suffered the most from gait ataxia improved their balance and 2 of the 4 patients improved manual dexterity. Conclusion. Climbing training has the potential to serve as a new rehabilitation method for patients with upper and lower limb ataxia.