58 resultados para Asymptotic expansions.
em Université de Lausanne, Switzerland
Resumo:
We have previously reported that CD8(+)CD28(-) T cells have relatively shorter telomeres compared with CD8(+)CD28(+) T cells. Oligoclonal expansion is a common feature of CD8(+) T cells in human peripheral blood, and these expansions predominantly occur in the CD57(+)/CD28(-) population. We studied the telomere length in subsets of CD8(+) T cells using quantitative fluorescence in situ hybridization and flow cytometry (flow FISH). Our results confirm that CD8(+)CD28(-) T cells have shorter telomeres as compared with their CD28(+) counterpart cells. In addition, the oligoclonally expanded cells within the CD8(+)CD28(-) T cell subset generally have even shorter telomeres than the CD28(-) subset as a whole. We conclude that the presence of clonal expansions in the CD8(+)CD28(-) T cell population largely explain the shorter telomeres in this subset. These clonally expanded CD8(+)CD28(-) T cells generally have characteristics of terminally differentiated effector cells. Nevertheless, there is considerable individual variation in the degree of telomere shortening in these cells, which may reflect host genetic factors as well as the type and timing of the antigenic exposure.
Resumo:
Cette thèse s'intéresse à étudier les propriétés extrémales de certains modèles de risque d'intérêt dans diverses applications de l'assurance, de la finance et des statistiques. Cette thèse se développe selon deux axes principaux, à savoir: Dans la première partie, nous nous concentrons sur deux modèles de risques univariés, c'est-à- dire, un modèle de risque de déflation et un modèle de risque de réassurance. Nous étudions le développement des queues de distribution sous certaines conditions des risques commun¬s. Les principaux résultats sont ainsi illustrés par des exemples typiques et des simulations numériques. Enfin, les résultats sont appliqués aux domaines des assurances, par exemple, les approximations de Value-at-Risk, d'espérance conditionnelle unilatérale etc. La deuxième partie de cette thèse est consacrée à trois modèles à deux variables: Le premier modèle concerne la censure à deux variables des événements extrême. Pour ce modèle, nous proposons tout d'abord une classe d'estimateurs pour les coefficients de dépendance et la probabilité des queues de distributions. Ces estimateurs sont flexibles en raison d'un paramètre de réglage. Leurs distributions asymptotiques sont obtenues sous certaines condi¬tions lentes bivariées de second ordre. Ensuite, nous donnons quelques exemples et présentons une petite étude de simulations de Monte Carlo, suivie par une application sur un ensemble de données réelles d'assurance. L'objectif de notre deuxième modèle de risque à deux variables est l'étude de coefficients de dépendance des queues de distributions obliques et asymétriques à deux variables. Ces distri¬butions obliques et asymétriques sont largement utiles dans les applications statistiques. Elles sont générées principalement par le mélange moyenne-variance de lois normales et le mélange de lois normales asymétriques d'échelles, qui distinguent la structure de dépendance de queue comme indiqué par nos principaux résultats. Le troisième modèle de risque à deux variables concerne le rapprochement des maxima de séries triangulaires elliptiques obliques. Les résultats théoriques sont fondés sur certaines hypothèses concernant le périmètre aléatoire sous-jacent des queues de distributions. -- This thesis aims to investigate the extremal properties of certain risk models of interest in vari¬ous applications from insurance, finance and statistics. This thesis develops along two principal lines, namely: In the first part, we focus on two univariate risk models, i.e., deflated risk and reinsurance risk models. Therein we investigate their tail expansions under certain tail conditions of the common risks. Our main results are illustrated by some typical examples and numerical simu¬lations as well. Finally, the findings are formulated into some applications in insurance fields, for instance, the approximations of Value-at-Risk, conditional tail expectations etc. The second part of this thesis is devoted to the following three bivariate models: The first model is concerned with bivariate censoring of extreme events. For this model, we first propose a class of estimators for both tail dependence coefficient and tail probability. These estimators are flexible due to a tuning parameter and their asymptotic distributions are obtained under some second order bivariate slowly varying conditions of the model. Then, we give some examples and present a small Monte Carlo simulation study followed by an application on a real-data set from insurance. The objective of our second bivariate risk model is the investigation of tail dependence coefficient of bivariate skew slash distributions. Such skew slash distributions are extensively useful in statistical applications and they are generated mainly by normal mean-variance mixture and scaled skew-normal mixture, which distinguish the tail dependence structure as shown by our principle results. The third bivariate risk model is concerned with the approximation of the component-wise maxima of skew elliptical triangular arrays. The theoretical results are based on certain tail assumptions on the underlying random radius.
Resumo:
Natural populations are of finite size and organisms carry multilocus genotypes. There are, nevertheless, few results on multilocus models when both random genetic drift and natural selection affect the evolutionary dynamics. In this paper we describe a formalism to calculate systematic perturbation expansions of moments of allelic states around neutrality in populations of constant size. This allows us to evaluate multilocus fixation probabilities (long-term limits of the moments) under arbitrary strength of selection and gene action. We show that such fixation probabilities can be expressed in terms of selection coefficients weighted by mean first passages times of ancestral gene lineages within a single ancestor. These passage times extend the coalescence times that weight selection coefficients in one-locus perturbation formulas for fixation probabilities. We then apply these results to investigate the Hill-Robertson effect and the coevolution of helping and punishment. Finally, we discuss limitations and strengths of the perturbation approach. In particular, it provides accurate approximations for fixation probabilities for weak selection regimes only (Ns < or = 1), but it provides generally good prediction for the direction of selection under frequency-dependent selection.
Higher-order expansions for compound distributions and ruin probabilities with subexponential claims
Resumo:
Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial-drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi-aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range-wide sampling. We documented a global demographic and spatial expansion approximately 0.1-0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent-wide gene flow among hippopotamus populations, and hence, no clear continental-scale genetic structuring remains. Nevertheless, present-day hippopotamus populations are genetically disconnected, probably as a result of the mid-Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah-adapted ungulate mammals and should be further investigated in other water-associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long-term decline.
Resumo:
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Resumo:
The sensitivity of altitudinal and latitudinal tree-line ecotones to climate change, particularly that of temperature, has received much attention. To improve our understanding of the factors affecting tree-line position, we used the spatially explicit dynamic forest model TreeMig. Although well-suited because of its landscape dynamics functions, TreeMig features a parabolic temperature growth response curve, which has recently been questioned. and the species parameters are not specifically calibrated for cold temperatures. Our main goals were to improve the theoretical basis of the temperature growth response curve in the model and develop a method for deriving that curve's parameters from tree-ring data. We replaced the parabola with an asymptotic curve, calibrated for the main species at the subalpine (Swiss Alps: Pinus cembra, Larix decidua, Picea abies) and boreal (Fennoscandia: Pinus sylvestris, Betula pubescens, P. abies) tree-lines. After fitting new parameters, the growth curve matched observed tree-ring widths better. For the subalpine species, the minimum degree-day sum allowing, growth (kDDMin) was lowered by around 100 degree-days; in the case of Larix, the maximum potential ring-width was increased to 5.19 mm. At the boreal tree-line, the kDDMin for P. sylvestris was lowered by 210 degree-days and its maximum ring-width increased to 2.943 mm; for Betula (new in the model) kDDMin was set to 325 degree-days and the maximum ring-width to 2.51 mm; the values from the only boreal sample site for Picea were similar to the subalpine ones, so the same parameters were used. However, adjusting the growth response alone did not improve the model's output concerning species' distributions and their relative importance at tree-line. Minimum winter temperature (MinWiT, mean of the coldest winter month), which controls seedling establishment in TreeMig, proved more important for determining distribution. Picea, P. sylvestris and Betula did not previously have minimum winter temperature limits, so these values were set to the 95th percentile of each species' coldest MinWiT site (respectively -7, -11, -13). In a case study for the Alps, the original and newly calibrated versions of TreeMig were compared with biomass data from the National Forest Inventor), (NFI). Both models gave similar, reasonably realistic results. In conclusion, this method of deriving temperature responses from tree-rings works well. However, regeneration and its underlying factors seem more important for controlling species' distributions than previously thought. More research on regeneration ecology, especially at the upper limit of forests. is needed to improve predictions of tree-line responses to climate change further.
Resumo:
Momentary configurations of long polymers at thermal equilibrium usually deviate from spherical symmetry and can be better described, on average, by a prolate ellipsoid. The asphericity and nature of asphericity (or prolateness) that describe these momentary ellipsoidal shapes of a polymer are determined by specific expressions involving the three principal moments of inertia calculated for configurations of the polymer. Earlier theoretical studies and numerical simulations have established that as the length of the polymer increases, the average shape for the statistical ensemble of random configurations asymptotically approaches a characteristic universal shape that depends on the solvent quality. It has been established, however, that these universal shapes differ for linear, circular, and branched chains. We investigate here the effect of knotting on the shape of cyclic polymers modeled as random isosegmental polygons. We observe that random polygons forming different knot types reach asymptotic shapes that are distinct from the ensemble average shape. For the same chain length, more complex knots are, on average, more spherical than less complex knots.
Resumo:
Increasing evidence suggests that adoptive transfer of antigen-specific CD8(+) T cells could represent an effective strategy in the fight against chronic viral infections and malignancies such as melanoma. None the less, a major limitation in the implementation of such therapy resides in the difficulties associated with achieving rapid and efficient expansion of functional T cells in culture necessary to obtain the large numbers required for intravenous infusion. Recently, the critical role of the cytokines interleukin (IL)-2, IL-7 and IL-15 in driving T cell proliferation has been emphasized, thus suggesting their use in the optimization of expansion protocols. We have used major histocompatibility complex (MHC) class I/peptide multimers to monitor the expansion of antigen-specific CD8 T lymphocytes from whole blood, exploring the effect of antigenic peptide dose, IL-2, IL-7 and IL-15 concentrations on the magnitude and functional characteristics of the antigen-specific CD8(+) T cells generated. We show here that significant expansions of antigen-specific T cells, up to 50% of the CD8(+) T cell population, can be obtained after a single round of antigen/cytokine (IL-2 or IL-15) stimulation, and that these cells display good cytolytic and interferon (IFN)-gamma secretion capabilities. Our results provide an important basis for the rapid in vitro expansion of autologous T cells from the circulating lymphocyte pool using a simple procedure, which is necessary for the development of adoptive transfer therapies.
Resumo:
Summary (in English) Computer simulations provide a practical way to address scientific questions that would be otherwise intractable. In evolutionary biology, and in population genetics in particular, the investigation of evolutionary processes frequently involves the implementation of complex models, making simulations a particularly valuable tool in the area. In this thesis work, I explored three questions involving the geographical range expansion of populations, taking advantage of spatially explicit simulations coupled with approximate Bayesian computation. First, the neutral evolutionary history of the human spread around the world was investigated, leading to a surprisingly simple model: A straightforward diffusion process of migrations from east Africa throughout a world map with homogeneous landmasses replicated to very large extent the complex patterns observed in real human populations, suggesting a more continuous (as opposed to structured) view of the distribution of modern human genetic diversity, which may play a better role as a base model for further studies. Second, the postglacial evolution of the European barn owl, with the formation of a remarkable coat-color cline, was inspected with two rounds of simulations: (i) determine the demographic background history and (ii) test the probability of a phenotypic cline, like the one observed in the natural populations, to appear without natural selection. We verified that the modern barn owl population originated from a single Iberian refugium and that they formed their color cline, not due to neutral evolution, but with the necessary participation of selection. The third and last part of this thesis refers to a simulation-only study inspired by the barn owl case above. In this chapter, we showed that selection is, indeed, effective during range expansions and that it leaves a distinguished signature, which can then be used to detect and measure natural selection in range-expanding populations. Résumé (en français) Les simulations fournissent un moyen pratique pour répondre à des questions scientifiques qui seraient inabordable autrement. En génétique des populations, l'étude des processus évolutifs implique souvent la mise en oeuvre de modèles complexes, et les simulations sont un outil particulièrement précieux dans ce domaine. Dans cette thèse, j'ai exploré trois questions en utilisant des simulations spatialement explicites dans un cadre de calculs Bayésiens approximés (approximate Bayesian computation : ABC). Tout d'abord, l'histoire de la colonisation humaine mondiale et de l'évolution de parties neutres du génome a été étudiée grâce à un modèle étonnement simple. Un processus de diffusion des migrants de l'Afrique orientale à travers un monde avec des masses terrestres homogènes a reproduit, dans une très large mesure, les signatures génétiques complexes observées dans les populations humaines réelles. Un tel modèle continu (opposé à un modèle structuré en populations) pourrait être très utile comme modèle de base dans l'étude de génétique humaine à l'avenir. Deuxièmement, l'évolution postglaciaire d'un gradient de couleur chez l'Effraie des clocher (Tyto alba) Européenne, a été examiné avec deux séries de simulations pour : (i) déterminer l'histoire démographique de base et (ii) tester la probabilité qu'un gradient phénotypique, tel qu'observé dans les populations naturelles puisse apparaître sans sélection naturelle. Nous avons montré que la population actuelle des chouettes est sortie d'un unique refuge ibérique et que le gradient de couleur ne peux pas s'être formé de manière neutre (sans l'action de la sélection naturelle). La troisième partie de cette thèse se réfère à une étude par simulations inspirée par l'étude de l'Effraie. Dans ce dernier chapitre, nous avons montré que la sélection est, en effet, aussi efficace dans les cas d'expansion d'aire de distribution et qu'elle laisse une signature unique, qui peut être utilisée pour la détecter et estimer sa force.