4 resultados para Asian Development Bank.
em Université de Lausanne, Switzerland
Resumo:
We report 30 polymorphic microsatellite markers for five species of Palearctic green toads (Bufo viridis subgroup): 23 in the diploid B. latastii, 19 in diploid B. turanensis, 20 in diploid B. shaartusiensis, 27 in tetraploid B. pewzowi, and 30 in triploid B. baturae. Genetic diversity at these loci, measured for 10-18 individuals per species, ranged from 2 to 19 alleles. These microsatellite loci will be useful for conservation plans (genetic diversity, population structure, evolutionary units), inheritance patterns, and evolution of green toads.
Resumo:
In the whole animal, metabolic regulations are set by reciprocal interactions between various organs, via the blood circulation. At present, analyses of such interactions require numerous and uneasily controlled in vivo experiments. In a search for an alternative to in vivo experiments, our work aims at developing a coculture system in which different cell types are isolated in polymer capsules and grown in a common environment. The signals exchanged between cells from various origins are, thus, reproducing the in vivo intertissular communications. With this perspective, we evaluated a new encapsulation system as an artificial housing for liver cells on the one hand and adipocytes on the other hand. Murine hepatocytes were encapsulated with specially designed multicomponent capsules formed by polyelectrolyte complexation between sodium alginate, cellulose sulphate and poly(methylene-coguanidine) hydrochloride, of which the permeability has been characterized. We demonstrated the absence of cytotoxicity and the excellent biocompatibility of these capsules towards primary culture of murine hepatocytes. Encapsulated hepatocytes retain their specific functions--transaminase activity, urea synthesis, and protein secretion--during the first four days of culture in minimum medium. Mature adipocytes, isolated from mouse epidydimal fat, were embedded in alginate beads. Measurement of protein secretion shows an identical profile between free and embedded adipocytes. We finally assessed the properties of encapsulated hepatocytes, cryopreserved over a periods of up to four months. The perspective of using encapsulated cells in coculture are discussed, since this system may represent a promising tool for fundamental research, such as analyses of drug metabolism, intercellular regulations, and metabolic pathways, as well as for the establishment of a tissue bank for storage and supply of murine hepatocytes.
Resumo:
A continental subduction-related and multistage exhumation process for the Tso Morari ultra-high pressure nappe is proposed. The model is constrained by published thermo-barometry and age data, combined with new geological and tectonic maps. Additionally, observations on the structural and metamorphic evolution of the Tso Morari area and the North Himalayan nappes are presented. The northern margin of the Indian continental crust was subducted to a depth of >90 km below Asia after continental collision some 55 Ma ago. The underthrusting was accompanied by the detachment and accretion of Late Proterozoic to Early Eocene sediments, creating the North Himalayan accretionary wedge, in front of the active Asian margin and the 103-50 Ma Ladakh arc batholith. The basic dikes in the Ordovician Tso Morari granite were transformed to eclogites with crystallization of coesite, some 53 Ma ago at a depth of >90 kin (>27 kbar) and temperatures of 500 to 600 degrees C. The detachment and extrusion of the low density Tso Morari nappe, composed of 70% of the Tso Morari granite and 30% of graywackes with some eclogitic dikes, occurred by ductile pure and simple shear deformation. It was pushed by buoyancy forces and by squeezing between the underthrusted Indian lithosphere and the Asian mantle wedge. The extruding Tso Morari nappe reached a depth of 35 km at the base of the North Himalayan accretionary wedge some 48 Ma ago. There the whole nappe stack recrystallized under amphibolite facies conditions of a Barrovian regional metamorphism with a metamorphic field gradient of 20 degrees C/km. An intense schistosity with a W-E oriented stretching lineation L, and top-to-the E shear criteria and crystallization of oriented sillimanite needles after kyanite, testify to the Tso Morari nappe extrusion and pressure drop. The whole nappe stack, comprising from the base to top the Tso Morari, Tetraogal, Karzok and Mata-Nyimaling-Tsarap nappes, was overprinted by new schistosities with a first N-directed and a second NE-directed stretching lineation L-2 and L-3 reaching the base of the North Himalayan accretionary wedge. They are characterized by top-to-the S and SW shear criteria. This structural overprint was related to an early N- and a younger NE-directed underthrusting of the Indian plate below Asia that was accompanied by anticlockwise rotation of India. The warping of the Tso Morari dome started already some 48 Ma ago with the formation of an extruding nappe at depth. The Tso Morari dome reached a depth of 15 km about 40 Ma ago in the eastern Kiagar La region and 30 Ma ago in the western Nuruchan region. The extrusion rate was of about 3 cm/yr between 53 and 48 Ma, followed by an uplift rate of 1.2 mm/yr between 48 and 30 Ma and of only 0.5 mm/yr after 30 Ma. Geomorphology observations show that the Tso Morari dome is still affected by faults, open regional dome, and basin and pull-apart structures, in a zone of active dextral transpression parallel to the Indus Suture zone.
Resumo:
Osteoporosis is a serious worldwide epidemic. Increased risk of fractures is the hallmark of the disease and is associated with increased morbidity, mortality and economic burden. FRAX® is a web-based tool developed by the Sheffield WHO Collaborating Center team, that integrates clinical risk factors, femoral neck BMD, country specific mortality and fracture data and calculates the 10 year fracture probability in order to help health care professionals identify patients who need treatment. However, only 31 countries have a FRAX® calculator at the time paper was accepted for publication. In the absence of a FRAX® model for a particular country, it has been suggested to use a surrogate country for which the epidemiology of osteoporosis most closely approximates the index country. More specific recommendations for clinicians in these countries are not available. In North America, concerns have also been raised regarding the assumptions used to construct the US ethnic specific FRAX® calculators with respect to the correction factors applied to derive fracture probabilities in Blacks, Asians and Hispanics in comparison to Whites. In addition, questions were raised about calculating fracture risk in other ethnic groups e.g., Native Americans and First Canadians. In order to provide additional guidance to clinicians, a FRAX® International Task Force was formed to address specific questions raised by physicians in countries without FRAX® calculators and seeking to integrate FRAX® into their clinical practice. The main questions that the task force tried to answer were the following: The Task Force members conducted appropriate literature reviews and developed preliminary statements that were discussed and graded by a panel of experts at the ISCD-IOF joint conference. The statements approved by the panel of experts are discussed in the current paper.