53 resultados para Asia, Central--History--Sources
em Université de Lausanne, Switzerland
Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.
Resumo:
Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation.
Resumo:
Uplift gradients can provide the location of highly strained zones, which can be considered to be seismic. The Turan block (Central Asia) contains zones with high gradient of uplift velocities, above the threshold 0.04mm km-1year-1. Some of these zones are associated with important seismic activity and others are not correlated with any recent important recorded earthquakes, however, recent faults scarps as well as diverted rivers may indicate a recent tectonic activity. This threshold of gradient is probably a significant rheologic property of the upper crust. On the basis of these considerations the Uzboy river area is proposed as a potential high seismic hazard zone.
Resumo:
THESIS ABSTRACT : Low-temperature thermochronology relies on application of radioisotopic systems whose closure temperatures are below temperatures at which the dated phases are formed. In that sense, the results are interpreted as "cooling ages" in contrast to "formation ages". Owing to the low closure-temperatures, it is possible to reconstruct exhumation and cooling paths of rocks during their residence at shallow levels of the crust, i.e. within first ~10 km of depth. Processes occurring at these shallow depths such as final exhumation, faulting and relief formation are fundamental for evolution of the mountain belts. This thesis aims at reconstructing the tectono-thermal history of the Aar massif in the Central Swiss Alps by means of zircon (U-Th)/He, apatite (U-Th)/He and apatite fission track thermochronology. The strategy involved acquisition of a large number of samples from a wide range of elevations in the deeply incised Lötschen valley and a nearby NEAT tunnel. This unique location allowed to precisely constrain timing, amount and mechanisms of exhumation of the main orographic feature of the Central Alps, evaluate the role of topography on the thermochronological record and test the impact of hydrothermal activity. Samples were collected from altitudes ranging between 650 and 3930 m and were grouped into five vertical profiles on the surface and one horizontal in the tunnel. Where possible, all three radiometric systems were applied to each sample. Zircon (U-Th)/He ages range from 5.1 to 9.4 Ma and are generally positively correlated with altitude. Age-elevation plots reveal a distinct break in slope, which translates into exhumation rate increasing from ~0.4 to ~3 km/Ma at 6 Ma. This acceleration is independently confirmed by increased cooling rates on the order of 100°C/Ma constrained on the basis of age differences between the zircon (U-Th)/He and the remaining systems. Apatite fission track data also plot on a steep age-elevation curve indicating rapid exhumation until the end of the Miocene. The 6 Ma event is interpreted as reflecting tectonically driven uplift of the Aar massif. The late Miocene timing implies that the increase of precipitation in the Pliocene did not trigger rapid exhumation in the Aar massif. The Messinian salinity crisis in the Mediterranean could not directly intensify erosion of the Aar but associated erosional output from the entire Alps may have tapered the orogenic wedge and caused reactivation of thrusting in the Aar massif. The high exhumation rates in the Messinian were followed by a decrease to ~1.3 km/Ma as evidenced by ~8 km of exhumation during last 6 Ma. The slowing of exhumation is also apparent from apatite (U-Th)1He age-elevation data in the northern part of the Lötschen valley where they plot on a ~0.5km/Ma line and range from 2.4 to 6.4 Ma However, from the apatite (U-Th)/He and fission track data from the NEAT tunnel, there is an indication of a perturbation of the record. The apatite ages are youngest under the axis of the valley, in contrast to an expected pattern where they would be youngest in the deepest sections of the tunnel due to heat advection into ridges. The valley however, developed in relatively soft schists while the ridges are built of solid granitoids. In line with hydrological observations from the tunnel, we suggest that the relatively permeable rocks under the valley floor, served as conduits of geothermal fluids that caused reheating leading to partial Helium loss and fission track annealing in apatites. In consequence, apatite ages from the lowermost samples are too young and the calculated exhumation rates may underestimate true values. This study demonstrated that high-density sampling is indispensable to provide meaningful thermochronological data in the Alpine setting. The multi-system approach allows verifying plausibility of the data and highlighting sources of perturbation. RÉSUMÉ DE THÈSE : La thermochronologie de basse température dépend de l'utilisation de systèmes radiométriques dont la température de fermeture est nettement inférieure à la température de cristallisation du minéral. Les résultats obtenus sont par conséquent interprétés comme des âges de refroidissement qui diffèrent des âges de formation obtenus par le biais d'autres systèmes de datation. Grâce aux températures de refroidissement basses, il est aisé de reconstruire les chemins de refroidissement et d'exhumation des roches lors de leur résidence dans la croute superficielle (jusqu'à 10 km). Les processus qui entrent en jeu à ces faibles profondeurs tels que l'exhumation finale, la fracturation et le faillage ainsi que la formation du relief sont fondamentaux dans l'évolution des chaînes de montagne. Ces dernières années, il est devenu clair que l'enregistrement thermochronologique dans les orogènes peut être influencé par le relief et réinitialisé par l'advection de la chaleur liée à la circulation de fluides géothermaux après le refroidissement initial. L'objectif de cette thèse est de reconstruire l'histoire tectono-thermique du massif de l'Aar dans les Alpes suisses Centrales à l'aide de trois thermochronomètres; (U-Th)/He sur zircon, (U-Th)/He sur apatite et les traces de fission sur apatite. Afin d'atteindre cet objectif, nous avons récolté un grand nombre d'échantillons provenant de différentes altitudes dans la vallée fortement incisée de Lötschental ainsi que du tunnel de NEAT. Cette stratégie d'échantillonnage nous a permis de contraindre de manière précise la chronologie, les quantités et les mécanismes d'exhumation de cette zone des Alpes Centrales, d'évaluer le rôle de la topographie sur l'enregistrement thermochronologique et de tester l'impact de l'hydrothermalisme sur les géochronomètres. Les échantillons ont été prélevés à des altitudes comprises entre 650 et 3930m selon 5 profils verticaux en surface et un dans le tunnel. Quand cela à été possible, les trois systèmes radiométriques ont été appliqués aux échantillons. Les âges (U-Th)\He obtenus sur zircons sont compris entre 5.l et 9.4 Ma et sont corrélés de manière positive avec l'altitude. Les graphiques représentant l'âge et l'élévation montrent une nette rupture de la pente qui traduisent un accroissement de la vitesse d'exhumation de 0.4 à 3 km\Ma il y a 6 Ma. Cette accélération de l'exhumation est confirmée par les vitesses de refroidissement de l'ordre de 100°C\Ma obtenus à partir des différents âges sur zircons et à partir des autres systèmes géochronologiques. Les données obtenues par traces de fission sur apatite nous indiquent également une exhumation rapide jusqu'à la fin du Miocène. Nous interprétons cet évènement à 6 Ma comme étant lié à l'uplift tectonique du massif de l'Aar. Le fait que cet évènement soit tardi-miocène implique qu'une augmentation des précipitations au Pliocène n'a pas engendré cette exhumation rapide du massif de l'Aar. La crise Messinienne de la mer méditerranée n'a pas pu avoir une incidence directe sur l'érosion du massif de l'Aar mais l'érosion associée à ce phénomène à pu réduire le coin orogénique alpin et causer la réactivation des chevauchements du massif de l'Aar. L'exhumation rapide Miocène a été suivie pas une diminution des taux d'exhumation lors des derniers 6 Ma (jusqu'à 1.3 km\Ma). Cependant, les âges (U-Th)\He sur apatite ainsi que les traces de fission sur apatite des échantillons du tunnel enregistrent une perturbation de l'enregistrement décrit ci-dessus. Les âges obtenus sur les apatites sont sensiblement plus jeunes sous l'axe de la vallée en comparaison du profil d'âges attendus. En effet, on attendrait des âges plus jeunes sous les parties les plus profondes du tunnel à cause de l'advection de la chaleur dans les flancs de la vallée. La vallée est creusée dans des schistes alors que les flancs de celle-ci sont constitués de granitoïdes plus durs. En accord avec les observations hydrologiques du tunnel, nous suggérons que la perméabilité élevée des roches sous l'axe de la vallée à permi l'infiltration de fluides géothermaux qui a généré un réchauffement des roches. Ce réchauffement aurait donc induit une perte d'Hélium et un recuit des traces de fission dans les apatites. Ceci résulterait en un rajeunissement des âges apatite et en une sous-estimation des vitesses d'exhumation sous l'axe de la vallée. Cette étude à servi à démontrer la nécessité d'un échantillonnage fin et précis afin d'apporter des données thermochronologiques de qualité dans le contexte alpin. Cette approche multi-système nous a permi de contrôler la pertinence des données acquises ainsi que d'identifier les sources possibles d'erreurs lors d'études thermochronologiques. RÉSUMÉ LARGE PUBLIC Lors d'une orogenèse, les roches subissent un cycle comprenant une subduction, de la déformation, du métamorphisme et, finalement, un retour à la surface (ou exhumation). L'exhumation résulte de la déformation au sein de la zone de collision, menant à un raccourcissement et un apaissessement de l'édifice rocheux, qui se traduit par une remontée des roches, création d'une topographie et érosion. Puisque l'érosion agit comme un racloir sur la partie supérieure de l'édifice, des tentatives de corrélation entre les épisodes d'exhumation rapide et les périodes d'érosion intensive, dues aux changements climatiques, ont été effectuées. La connaissance de la chronologie et du lieu précis est d'une importance capitale pour une quelconque reconstruction de l'évolution d'une chaîne de montagne. Ces critères sont donnés par un retraçage des changements de la température de la roche en fonction du temps, nous donnant le taux de refroidissement. L'instant auquel les roches ont refroidit, passant une certaine température, est contraint par l'application de techniques de datation par radiométrie. Ces méthodes reposent sur la désintégration des isotopes radiogéniques, tels que l'uranium et le potassium, tous deux abondants dans les roches de la croûte terrestre. Les produits de cette désintégration ne sont pas retenus dans les minéraux hôtes jusqu'au moment du refroidissement de la roche sous une température appelée 'de fermeture' , spécifique à chaque système de datation. Par exemple, la désintégration radioactive des atomes d'uranium et de thorium produit des atomes d'hélium qui s'échappent d'un cristal de zircon à des températures supérieures à 200°C. En mesurant la teneur en uranium-parent, l'hélium accumulé et en connaissant le taux de désintégration, il est possible de calculer à quel moment la roche échantillonnée est passée sous la température de 200°C. Si le gradient géothermal est connu, les températures de fermeture peuvent être converties en profondeurs actuelles (p. ex. 200°C ≈ 7km), et le taux de refroidissement en taux d'exhumation. De plus, en datant par système radiométrique des échantillons espacés verticalement, il est possible de contraindre directement le taux d'exhumation de la section échantillonnée en observant les différences d'âges entre des échantillons voisins. Dans les Alpes suisses, le massif de l'Aar forme une structure orographique majeure. Avec des altitudes supérieures à 4000m et un relief spectaculaire de plus de 2000m, le massif domine la partie centrale de la chaîne de montagne. Les roches aujourd'hui exposées à la surface ont été enfouies à plus de 10 km de profond il y a 20 Ma, mais la topographie actuelle du massif de l'Aar semble surtout s'être développée par un soulèvement actif depuis quelques millions d'années, c'est-à-dire depuis le Néogène supérieur. Cette période comprend un changement climatique soudain ayant touché l'Europe il y a environ 5 Ma et qui a occasionné de fortes précipitations, entraînant certainement une augmentation de l'érosion et accélérant l'exhumation des Alpes. Dans cette étude, nous avons employé le système de datation (U-TH)/He sur zircon, dont la température de fermeture de 200°C est suffisamment basse pour caractériser l'exhumation du Néogène sup. /Pliocène. Les échantillons proviennent du Lötschental et du tunnel ferroviaire le plus profond du monde (NEAT) situé dans la partie ouest du massif de l'Aar. Considérés dans l'ensemble, ces échantillons se répartissent sur un dénivelé de 3000m et des âges de 5.1 à 9.4 Ma. Les échantillons d'altitude supérieure (et donc plus vieux) documentent un taux d'exhumation de 0.4 km/Ma jusqu'à il y a 6 Ma, alors que les échantillons situés les plus bas ont des âges similaires allant de 6 à 5.4 Ma, donnant un taux jusqu'à 3km /Ma. Ces données montrent une accélération dramatique de l'exhumation du massif de l'Aar il y a 6 Ma. L'exhumation miocène sup. du massif prédate donc le changement climatique Pliocène. Cependant, lors de la crise de salinité d'il y a 6-5.3 Ma (Messinien), le niveau de la mer Méditerranée est descendu de 3km. Un tel abaissement de la surface d'érosion peut avoir accéléré l'exhumation des Alpes, mais le bassin sud alpin était trop loin du massif de l'Aar pour influencer son érosion. Nous arrivons à la conclusion que la datation (U-Th)/He permet de contraindre précisément la chronologie et l'exhumation du massif de l'Aar. Concernant la dualité tectonique-érosion, nous suggérons que, dans le cas du massif de l'Aar, la tectonique prédomine.
Resumo:
Résumé : Les corps magmatiques sont des indicateurs essentiels dans toute reconstitution paléogéographique et/ou géodynamique d'un cycle orogénique, en particulier en contexte polycyclique, où la plupart des autres indices ont été oblitérés. Ils sont aisément datables et leurs caractéristiques géochimiques permettent de contraindre leur contexte tectonique de mise en place. Cette approche a été appliquée aux socles pré-mésozoïques des nappes penniques inférieures de Sambuco et de la Maggia, dans les Alpes centrales lepontines. Plusieurs événements magmatiques ont été identifiés dans le socle de Sambuco et datés par la méthode U-Pb sur zircon couplée à la technique LA-ICPMS. La suite calco-alcaline mafique rubanée de Scheggia est datée du Cambrien inférieur à 540-530 Ma ; le métagranite alumineux oeillé de Sasso Nero a un âge de 480-470 Ma, tout comme bien d'autres «older orthogneisses» des socles alpins. Il contient des zircons hérités d'âge panafricain à 630-610 Ma, indicateur d'une affiliation gondwanienne de ces terrains. Le pluton calco-alcalin du Matorello est daté à environ 300-310 Ma, et les filons lamprophyriques qu'il abrite à 300 Ma. La granodiorite de Cocco et le leucogranite de Ruscada, tous deux intrudés dans le socle de la nappe adjacente de la Maggia, ont des âges similaires à celui du Matorello. Ceci ajouté aux similitudes magmatiques observées entre Cocco et Matorello suggère une proximité paléogéographique des deux nappes au Permien-Carbonifère. Or ces dernières sont actuellement considérées appartenir à deux domaines paléogéographiques mésozoïques distincts : helvétique pour Sambuco et briançonnais pour Maggia, séparés par un bassin océanique. Si tel fut le cas, aucun mouvement décrochant ne doit avoir décalé les marges continentales de l'océan, retrouvées en parfaite coïncidence lors de sa fermeture. Le Matorello est un pluton recristallisé en faciès amphibolite et plissé par cinq phases successives de déformation non-coaxiales, qui ont conduit à son renversement complet, attesté par des indicateurs de paléogravité. Il préserve de spectaculaires phénomènes de coexistence liquide de magmas (essaims d'enclaves et Bills composites). Ce pluton était originellement tabulaire, construit par l'accumulation de multiples injections de magma en feuillets d'épaisseur métrique à décamétrique. Suivant le rythme de mise en place, les injections successives ont rapidement cristallisé avec des contours nets et bien définis (Bills composites) ou se sont mélangées avec les précédentes pour former une couche non consolidée de plusieurs dizaines de mètres d'épaisseur (granodiorite principale). Les injections individuelles sont délimitées par de subtils contrastes en granulométrie, proportions modales ou ségrégation de minéraux (schlieren), ou par des phénomènes d'érosion le long des surfaces de contact. Deux couches métriques à contour sinueux consistent en une accumulation compacte d'enclaves mafiques arrondies dans une matrice granodioritique fine. Le granoclassement des enclaves, la présence de figures de charge et de phénomènes érosifs en base de couche, ainsi que des schlieren de biotite entrecroisés évoquent l'injection de coulées de magma chargé d'enclaves et de faible viscosité en régime hydrodynamique turbulent dans un encaissant granodioritique encore largement liquide. La nature hybride des roches implique une chambre magmatique sous-jacente, en cours de différenciation et périodiquement réalimentée. Les magmas sont des liquides mafiques dérivés du manteau et des liquides anatectiques d'origine crustale, comme l'indique la gamme mesurée des rapports isotopiques initiaux du Sr (0.704 à 0.709) et des valeurs epsilon Nd (-2.1 à -4.7). Ces données montrent également que la contribution crustale est dominante, en accord avec les isotopes du plomb. Les phénomènes d'hybridation ont vraisemblablement eu lieu en base de croûte et dans la chambre magmatique sous-jacente au laccolite du Matorello. Les indicateurs de paléogravité du Matorello contribuent accessoirement à la compréhension de l'architecture actuelle de la nappe de Sambuco. Des plis isoclinaux à surface axiale verticale peuvent être mis en évidence par le contact entre les faciès dioritique et granodioritique. L'antiforme dont le Matorello forme le coeur est un synclinal, ce qui le positionne dans le Flanc inverse du grand pli couché que forme la nappe de Sambuco. Par ailleurs, des blocs de gneiss retrouvés dans le wildflysch sommital de la couverture de la nappe d'Antigorio ont été affiliés dans cette étude au pluton du Matorello. Ceci implique que le front de la nappe de Sambuco chevauchait déjà la partie est du bassin d'Antigorio au moment de sa fermeture. Par conséquent, ce n'est qu'en position externe que la nappe du Lebendun chevauche directement la nappe d'Antigorio. Abstract Magmatic bodies are important markers in paleo-geographic or geodynamic reconstructions of orogenic cycles, even more so in the case of polycyclic events where many of the other markers have been overwritten or destroyed. Plutons are relatively easy to date and their geochemical properties help constrain the tectonic context in which they were emplaced. This study focuses on the pre-mesozoic basement in the Sambuco and Maggia lower Penninic nappes located in the central Lepontine domain of the Alps. A number of magmatic events have been identified in the Sambuco basement. These events were dated using LA-ICPMS U/Pb on zircon grains. The mafic calc-alkaline banded Scheggia suite is dated as lower Cambrian, 540-530 Ma. The Al-rich Sasso-Nero lenticular gneiss is 480-470 Ma old (similarly to many older orfhogneisses of the Alpine basement) and contains 630-610 Ma old pan-African inherited zircons that illustrate the Gondwanian origin of these terranes.The calc-alkaline Matorello pluton is dated as 310-300 Ma whereas the lamprophyric bodies it contains are of 300 Ma. The Cocco granodiorite and the Ruscada leucogranite both intrude the basement of the adjacent Maggia nappe and are of similar ages to the Matorello. The ages as well as the geochemical similarities between the Cocco, Rucada and Matorello plutons suggest their paleo-geographic proximity at the Permian-Carboniferous boundary. However, these nappes are currently considered as belonging to two different Mesozoic paleo-geographic domains. Indeed, the Sambuco is considered as Helvetic whereas the Maggia is said to be Briançonnais, both separated by an oceanic basin. If this is the case, then it is essential that nostrike-slip movement has misaligned both continental margins since these coincide perfectly now that the oceanic domain closed. The Matorello pluton was originally a tabular intrusion, built up by the accumulation of multiple, several meter-thick, subhorizontal sheet-like injections of magma. Depending on their emplacement rate, the successive magma injections either solidified rapidly with sharp and rather well-defined boundaries (like the composite sills) or mingled with previous injections generating a thick molten layer up to several tens to hundred meters thick, like in the main granodioritic facies. These coalesced injections are hardly distinguishable, however subtle contrasts in granulometry, mineral modal proportions or mineral sorting (cross-bedded biotite-rich schlieren), as well as erosional features and/or crystal entrapment along contact surfaces allow to distinguish between the different injections. Two exceptional meter-thick layers display sinuous boundaries with the host granodiorite and consist of a densely packed accumulation of mafic enclaves in a granodioritic matrix. Gravitational sorting of the enclaves with load cast features at the base of the layers and sinuous biotite schlieren point to injection of low viscosity turbulent composite magma flows in the still largely molten granodiorite host. The hybrid nature of these rocks implies the existence of á periodically replenished and differentiated underlying magma chamber. Magmas are mafic liquids derived from the mantle and anatectic liquids of crustal origin, as shown by the (87Sr/86Sr), and epsilon Nd values (0.704-0.709 and -2.1 to -4.7 respectively. These data show that the crustal contribution is important, as confirmed by the Pb isotopes. The hybridisation processes seem to have occurred in the lower crust in magma chambers underlying the Matorello laccolith. The paleo-gravity markers in the Matorello help understand the architecture of the Sambuco nappe. Isoclinal folds with a vertical axial plane can be seen at the contact between dioritic and granodioritic facies. The antiform structure of which the Matorello is the heart is in fact a syncline. This places it in the inverse flanc of the large recumbent fold that constitutes the Sambuco nappe. The gneiss blocs found in the summital wildflysh cover of the Antigorio nappe have been linked to the Matorello pluton. This means that the front of the Sambuco nappe already overlapped the Antigorio basin when it closed. This implies that the Lebendun nappe can only overlap the Antigorio nappe in it's external position. Résumé grand public La chaîne alpine est la conséquence de la collision tertiaire entre deux masses continentales, l'Europe au nord et la péninsule apulienne africaine au sud, originellement séparées par l'océan mésozoïque téthysien. Cette collision a fermé un espace large de plusieurs centaines de km avec pour résultat l'écaillage de la croûte terrestre en unités tectoniques de dimensions variables, qui se sont empilées, imbriquées, éventuellement replissées en nappes de géométrie complexe. Cet amoncellement de 40 km d'épaisseur a vu sa température et sa pression lithostatique internes augmenter jusqu'à des valeurs de l'ordre de 680 °C et 6000 bars, induisant une recristallisation métamorphique des roches. L'un des objectifs de la géologie alpine est de reconstituer la géographie de la région aux temps mésozoïques de l'océan téthysien, en d'autres termes, de replacer chacune des unités tectoniques identifiées au sein de l'empilement alpin dans sa position originelle. Le défi est de taille et peut être comparé à celui de la reconstitution d'un vaste puzzle, dont certaines pièces seraient endommagées au niveau de leur contour ou leurs couleurs (métamorphisme), dissimulées par d'autres (enfouissement), voire tombées de la table de jeu (subduction, échappement latéral). Plusieurs approches ont été mises en oeuvre au cours du siècle écoulé. On citera en particulier la stratigraphie, la tectonique et le paléomagnétisme. Dans ce travail, nous avons essentiellement utilisé des techniques de datation isotopique absolue des roches (U/Pb sur zircon) qui, sur la base des connaissances acquises par l'ensemble des autres disciplines géologiques, nous ont permis de mieux contraindre ta paléogéographie mésozoïque du domaine «pennique inférieur » des Alpes centrales lépontines. Et au-delà? Nous savons tous que la disposition des continents à la surface de la Terre évolue constamment. Il est donc tentant d'essayer de remonter plus loin encore dans le temps et de reconstituer la physionomie de la marge sud européenne, tout au moins certains éléments de son histoire, au cours de l'ère paléozoïque. Les traces de ces événements très anciens sont naturellement ténues et dans ce contexte, les techniques de datation mentionnées ci-dessus deviennent les outils les plus performants. Ainsi, des datations u/Pb sur zircon nous ont permis de recenser plusieurs intrusions magmatiques, attribuées à quatre événements orogéniques anté-alpins. Des âges néoprotérozoïques (630-610 millions d'années ou Ma), cambrien inférieur (540-530 Ma), ordovicien inférieur (480-470 Ma) et carbonifère supérieur-permien inférieur (310-285 Ma) ont été obtenus dans le socle de la nappe de Sambuco. Des âges similaires à 300 Ma ont été obtenus dans la nappe voisine de la Maggia, qui permettent de relier ces deux unités. Aujourd'hui côte à côte, ces deux nappes devaient également se trouver proches l'une de l'autre il y a 300 Ma, lors de l'extension post-varisque. Les structures magmatiques spectaculaires préservées dans le pluton du Matorello (300 Ma) contraignent la géométrie actuelle de la nappe de Sambuco dans laquelle l'intrusion s'est mise en place. La forme originelle du pluton, aujourd'hui retourné et replissé plusieurs fois, s'avère être tabulaire, faite d'intrusions de faible épaisseur (1-300 m) s'étalant en forme de disque (30m à 2 km de diamètre). Les injections successives de magma se sont accumulées sous un toit dioritique précoce; elles sont issues, par le refais de fractures, d'une chambre magmatique plus profonde, périodiquement réalimentée par des magmas calco-alcalins d'origine mantellique contaminés parla croûte continentale profonde (εNd = -2.1 à -4.7). Des accumulations d'enclaves magmatiques arrondies et granoclassées dans des paléo-chenaux à fond érosif témoignent de conditions de mise en place hydrodynamiques à haute énergie. Ces enclaves sont emmenées de la chambre magmatique sous-jacente à la faveur d'épisodes de fracturation hydraulique liés à l'injection de magmas matelliques chauds dans des liquides différenciés riches en eau. Cette hypothèse est étayée par l'existence de filons composites. Une paléohorizontale a pu être déduite au sein du pluton, indiquant que cette partie de la nappe de Sambuco est verticalisée et isoclinalement replissée par la déformation alpine. Finalement, des blocs érodés du socle Sambuco ont été retrouvés dans le wildflysch sommital de la couverture sédimentaire mésozoïque de la nappe d'Antigorio sous-jacente. Ceci suggère que les blocs ont été fournis parle front de la nappe de Sambuco en train de chevaucher sur la nappe d'Antigorio au moment de la fermeture du bassin sédimentaire de cette dernière.
Resumo:
Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates.
Resumo:
Les reconstructions palinspastiques fournissent le cadre idéal à de nombreuses études géologiques, géographiques, océanographique ou climatiques. En tant qu?historiens de la terre, les "reconstructeurs" essayent d?en déchiffrer le passé. Depuis qu?ils savent que les continents bougent, les géologues essayent de retracer leur évolution à travers les âges. Si l?idée originale de Wegener était révolutionnaire au début du siècle passé, nous savons depuis le début des années « soixante » que les continents ne "dérivent" pas sans but au milieu des océans mais sont inclus dans un sur-ensemble associant croûte « continentale » et « océanique »: les plaques tectoniques. Malheureusement, pour des raisons historiques aussi bien que techniques, cette idée ne reçoit toujours pas l'écho suffisant parmi la communauté des reconstructeurs. Néanmoins, nous sommes intimement convaincus qu?en appliquant certaines méthodes et certains principes il est possible d?échapper à l?approche "Wégenerienne" traditionnelle pour enfin tendre vers la tectonique des plaques. Le but principal du présent travail est d?exposer, avec tous les détails nécessaires, nos outils et méthodes. Partant des données paléomagnétiques et paléogéographiques classiquement utilisées pour les reconstructions, nous avons développé une nouvelle méthodologie replaçant les plaques tectoniques et leur cinématique au coeur du problème. En utilisant des assemblages continentaux (aussi appelés "assemblées clés") comme des points d?ancrage répartis sur toute la durée de notre étude (allant de l?Eocène jusqu?au Cambrien), nous développons des scénarios géodynamiques permettant de passer de l?une à l?autre en allant du passé vers le présent. Entre deux étapes, les plaques lithosphériques sont peu à peu reconstruites en additionnant/ supprimant les matériels océaniques (symbolisés par des isochrones synthétiques) aux continents. Excepté lors des collisions, les plaques sont bougées comme des entités propres et rigides. A travers les âges, les seuls éléments évoluant sont les limites de plaques. Elles sont préservées aux cours du temps et suivent une évolution géodynamique consistante tout en formant toujours un réseau interconnecté à travers l?espace. Cette approche appelée "limites de plaques dynamiques" intègre de multiples facteurs parmi lesquels la flottabilité des plaques, les taux d'accrétions aux rides, les courbes de subsidence, les données stratigraphiques et paléobiogéographiques aussi bien que les évènements tectoniques et magmatiques majeurs. Cette méthode offre ainsi un bon contrôle sur la cinématique des plaques et fournit de sévères contraintes au modèle. Cette approche "multi-source" nécessite une organisation et une gestion des données efficaces. Avant le début de cette étude, les masses de données nécessaires était devenues un obstacle difficilement surmontable. Les SIG (Systèmes d?Information Géographiques) et les géo-databases sont des outils informatiques spécialement dédiés à la gestion, au stockage et à l?analyse des données spatialement référencées et de leurs attributs. Grâce au développement dans ArcGIS de la base de données PaleoDyn nous avons pu convertir cette masse de données discontinues en informations géodynamiques précieuses et facilement accessibles pour la création des reconstructions. Dans le même temps, grâce à des outils spécialement développés, nous avons, tout à la fois, facilité le travail de reconstruction (tâches automatisées) et amélioré le modèle en développant fortement le contrôle cinématique par la création de modèles de vitesses des plaques. Sur la base des 340 terranes nouvellement définis, nous avons ainsi développé un set de 35 reconstructions auxquelles est toujours associé un modèle de vitesse. Grâce à cet ensemble de données unique, nous pouvons maintenant aborder des problématiques majeurs de la géologie moderne telles que l?étude des variations du niveau marin et des changements climatiques. Nous avons commencé par aborder un autre problème majeur (et non définitivement élucidé!) de la tectonique moderne: les mécanismes contrôlant les mouvements des plaques. Nous avons pu observer que, tout au long de l?histoire de la terre, les pôles de rotation des plaques (décrivant les mouvements des plaques à la surface de la terre) tendent à se répartir le long d'une bande allant du Pacifique Nord au Nord de l'Amérique du Sud, l'Atlantique Central, l'Afrique du Nord, l'Asie Centrale jusqu'au Japon. Fondamentalement, cette répartition signifie que les plaques ont tendance à fuir ce plan médian. En l'absence d'un biais méthodologique que nous n'aurions pas identifié, nous avons interprété ce phénomène comme reflétant l'influence séculaire de la Lune sur le mouvement des plaques. La Lune sur le mouvement des plaques. Le domaine océanique est la clé de voute de notre modèle. Nous avons attaché un intérêt tout particulier à le reconstruire avec beaucoup de détails. Dans ce modèle, la croûte océanique est préservée d?une reconstruction à l?autre. Le matériel crustal y est symbolisé sous la forme d?isochrones synthétiques dont nous connaissons les âges. Nous avons également reconstruit les marges (actives ou passives), les rides médio-océaniques et les subductions intra-océaniques. En utilisant ce set de données très détaillé, nous avons pu développer des modèles bathymétriques 3-D unique offrant une précision bien supérieure aux précédents.<br/><br/>Palinspastic reconstructions offer an ideal framework for geological, geographical, oceanographic and climatology studies. As historians of the Earth, "reconstructers" try to decipher the past. Since they know that continents are moving, geologists a trying to retrieve the continents distributions through ages. If Wegener?s view of continent motions was revolutionary at the beginning of the 20th century, we know, since the Early 1960?s that continents are not drifting without goal in the oceanic realm but are included in a larger set including, all at once, the oceanic and the continental crust: the tectonic plates. Unfortunately, mainly due to technical and historical issues, this idea seems not to receive a sufficient echo among our particularly concerned community. However, we are intimately convinced that, by applying specific methods and principles we can escape the traditional "Wegenerian" point of view to, at last, reach real plate tectonics. This is the main aim of this study to defend this point of view by exposing, with all necessary details, our methods and tools. Starting with the paleomagnetic and paleogeographic data classically used in reconstruction studies, we developed a modern methodology placing the plates and their kinematics at the centre of the issue. Using assemblies of continents (referred as "key assemblies") as anchors distributed all along the scope of our study (ranging from Eocene time to Cambrian time) we develop geodynamic scenarios leading from one to the next, from the past to the present. In between, lithospheric plates are progressively reconstructed by adding/removing oceanic material (symbolized by synthetic isochrones) to major continents. Except during collisions, plates are moved as single rigid entities. The only evolving elements are the plate boundaries which are preserved and follow a consistent geodynamical evolution through time and form an interconnected network through space. This "dynamic plate boundaries" approach integrates plate buoyancy factors, oceans spreading rates, subsidence patterns, stratigraphic and paleobiogeographic data, as well as major tectonic and magmatic events. It offers a good control on plate kinematics and provides severe constraints for the model. This multi-sources approach requires an efficient data management. Prior to this study, the critical mass of necessary data became a sorely surmountable obstacle. GIS and geodatabases are modern informatics tools of specifically devoted to store, analyze and manage data and associated attributes spatially referenced on the Earth. By developing the PaleoDyn database in ArcGIS software we converted the mass of scattered data offered by the geological records into valuable geodynamical information easily accessible for reconstructions creation. In the same time, by programming specific tools we, all at once, facilitated the reconstruction work (tasks automation) and enhanced the model (by highly increasing the kinematic control of plate motions thanks to plate velocity models). Based on the 340 terranes properly defined, we developed a revised set of 35 reconstructions associated to their own velocity models. Using this unique dataset we are now able to tackle major issues of the geology (such as the global sea-level variations and climate changes). We started by studying one of the major unsolved issues of the modern plate tectonics: the driving mechanism of plate motions. We observed that, all along the Earth?s history, plates rotation poles (describing plate motions across the Earth?s surface) tend to follow a slight linear distribution along a band going from the Northern Pacific through Northern South-America, Central Atlantic, Northern Africa, Central Asia up to Japan. Basically, it sighifies that plates tend to escape this median plan. In the absence of a non-identified methodological bias, we interpreted it as the potential secular influence ot the Moon on plate motions. The oceanic realms are the cornerstone of our model and we attached a particular interest to reconstruct them with many details. In this model, the oceanic crust is preserved from one reconstruction to the next. The crustal material is symbolised by the synthetic isochrons from which we know the ages. We also reconstruct the margins (active or passive), ridges and intra-oceanic subductions. Using this detailed oceanic dataset, we developed unique 3-D bathymetric models offering a better precision than all the previously existing ones.
Resumo:
Abstract The purpose of this study is to unravel the geodynamic evolution of Thailand and, from that, to extend the interpretation to the rest of Southeast Asia. The methodology was based in a first time on fieldwork in Northern Thailand and Southernmost Myanmar, using a multidisciplinary approach, and then on the compilation and re-interpretation, in a plate tectonics point of view, of existing data about the whole Southeast Asia. The main results concern the Nan-Uttaradit suture, the Chiang Mai Volcanic Belt and the proposition of a new location for the Palaeotethys suture. This led to the establishment of a new plate tectonic model for the geodynamic evolution of Southeast Asia, implying the existence new terranes (Orang Laut and the redefinition of Shan-Thai) and the role of the Palaeopacific Ocean in the tectonic development of the area. The model proposed here considers the Palaeotethys suture as located along the Tertiary Mae Yuam Fault, which represents the divide between the Cimmerian Sibumasu terrane and the Indochina-derived Shan-Thai block. The term Shan-Thai, previously used to define the Cimmerian area (when the Palaeotethys suture was thought to represented by the Nan-Uttaradit suture), was redefined here by keeping its geographical location within the Shan States of Myanmar and Central-Northern Thailand, but attributing it an East Asian Origin. Its detachment from Indochina was the result of the Early Permian opening of the Nan basin. The Nan basin closed during the Middle Triassic, before the deposition of Carnian-Norian molasse. The modalities of the closure of the basin imply a first phase of Middle Permian obduction, followed by final eastwards subduction. The Chiang Mai Volcanic Belt consists of scattered basaltic rocks erupted at least during the Viséan in an extensional continental intraplate setting, on the Shan-Thai part of the Indochina block. The Viséan age was established by the dating of limestone stratigraphically overlying the basalts. In several localities of the East Asian Continent, coeval extensional features occur, possibly implying one or more Early Carboniferous extensional events at a regional scale. These events occurred either due to the presence of a mantle plume or to the roll-back of the Palaeopacific Ocean, subducting beneath Indochina and South China, or both. The Palaeopacific Ocean is responsible, during the Early Permian, for the opening of the Song Ma and Poko back-arcs (Vietnam) with the consequent detachment of the Orang Laut Terranes (Eastern Vietnam, West Sumatra, Kalimantan, Palawan, Taiwan). The Late Triassic/Early Jurassic closure of the Eastern Palaeotethys is considered as having taken place by subduction beneath its southern margin (Gondwana), due to the absence of Late Palaeozoic arc magmatism on its northern (Indochinese) margin and the presence of volcanism on the Cimmerian blocks (Mergui, Lhasa). Résumé Le but de cette étude est d'éclaircir l'évolution géodynamique de la Thaïlande et, à partir de cela, d'étendre l'interprétation au reste de l'Asie du Sud-Est. La méthodologie utilisée est basée dans un premier temps sur du travail de terrain en Thaïlande du nord et dans l'extrême sud du Myanmar, en se basant sur une approche pluridisciplinaire. Dans un deuxième temps, la compilation et la réinterprétation de données préexistantes sur l'Asie du Sud-est la été faite, dans une optique basée sur la tectonique des plaques. Les principaux résultats de ce travail concernent la suture de Nan-Uttaradit, la « Chiang Mai Volcanic Belt» et la proposition d'une nouvelle localité pour la suture de la Paléotethys. Ceci a conduit à l'établissement d'un nouveau modèle pour l'évolution géodynamique de l'Asie du Sud-est, impliquant l'existence de nouveaux terranes (Orang Laut et Shan-Thai redéfini) et le rôle joué par le Paléopacifique dans le développement tectonique de la région. Le modèle présenté ici considère que la suture de la Paléotethys est située le long de la faille Tertiaire de Mae Yuam, qui représente la séparation entre le terrain Cimmérien de Sibumasu et le bloc de Shan-Thai, d'origine Indochinoise. Le terme Shan-Thai, anciennement utilise pour définir le bloc Cimmérien (quand la suture de la Paléotethys était considérée être représentée par la suture de Nan-Uttaradit), a été redéfini ici en maintenant sa localisation géographique dans les états Shan du Myanmar et la Thaïlande nord-centrale, mais en lui attribuant une origine Est Asiatique. Son détachement de l'Indochine est le résultat de l'ouverture du basin de Nan au Permien Inférieur. Le basin de Nan s'est fermé pendant le Trias Moyen, avant le dépôt de molasse Carnienne-Norienne. Les modalités de fermeture du basin invoquent une première phase d'obduction au Permien Moyen, suivie par une subduction finale vers l'est. La "Chiang Mai Volcanic Belt" consiste en des basaltes éparpillés qui ont mis en place au moins pendant le Viséen dans un contexte extensif intraplaque continental sur la partie de l'Indochine correspondant au bloc de Shan-Thai. L'âge Viséen a été établi sur la base de la datation de calcaires qui surmontent stratigraphiquement les basaltes. Dans plusieurs localités du continent Est Asiatique, des preuves d'extension plus ou moins contemporaines ont été retrouvées, ce qui implique l'existence d'une ou plusieurs phases d'extension au Carbonifère Inférieur a une échelle régionale. Ces événements sont attribués soit à la présence d'un plume mantellique, ou au rollback du Paléopacifique, qui subductait sous l'Indochine et la Chine Sud, soit les deux. Pendant le Permien inférieur, le Paléopacifique est responsable pour l'ouverture des basins d'arrière arc de Song Ma et Poko (Vietnam), induisant le détachement des Orang Laut Terranes (Est Vietnam, Ouest Sumatra, Kalimantan, Palawan, Taiwan). La fermeture de la Paléotethys Orientale au Trias Supérieur/Jurassique Inférieur est considérée avoir eu lieu par subduction sous sa marge méridionale (Gondwana), à cause de l'absence de magmatisme d'arc sur sa marge nord (Indochinoise) et de la présence de volcanisme sur les blocs Cimmériens de Lhassa et Sibumasu (Mergui). Résumé large public L'histoire géologique de l'Asie du Sud-est depuis environ 430 millions d'années a été déterminée par les collisions successives de plusieurs continents les uns avec les autres. Il y a environ 430 millions d'années, au Silurien, un grand continent appelé Gondwana, a commencé à se «déchirer» sous l'effet des contraintes tectoniques qui le tiraient. Cette extension a provoqué la rupture du continent et l'ouverture d'un grand océan, appelé Paléotethys, éloignant les deux parties désormais séparées. C'est ainsi que le continent Est Asiatique, composé d'une partie de la Chine actuelle, de la Thaïlande, du Myanmar, de Sumatra, du Vietnam et de Bornéo a été entraîné avec le bord (marge) nord de la Paléotethys, qui s'ouvrait petit à petit. Durant le Carbonifère Supérieur, il y a environ 300 millions d'années, le sud du Gondwana subissait une glaciation, comme en témoigne le dépôt de sédiments glaciaires dans les couches de cet âge. Au même moment le continent Est Asiatique se trouvait à des latitudes tropicales ou équatoriales, ce qui permettait le dépôt de calcaires contenant différents fossiles de foraminifères d'eau chaude et de coraux. Durant le Permien Inférieur, il y a environ 295 millions d'années, la Paléotethys Orientale, qui était un relativement vieil océan avec une croûte froide et lourde, se refermait. La croûte océanique a commencé à s'enfoncer, au sud, sous le Gondwana. C'est ce que l'on appelle la subduction. Ainsi, le Gondwana s'est retrouvé en position de plaque supérieure, par rapport à la Paléotethys qui, elle, était en plaque inférieure. La plaque inférieure en subductant a commencé à reculer. Comme elle ne pouvait pas se désolidariser de la plaque supérieure, en reculant elle l'a tirée. C'est le phénomène du «roll-back ». Cette traction a eu pour effet de déchirer une nouvelle fois le Gondwana, ce qui a résulté en la création d'un nouvel Océan, la Neotethys. Cet Océan en s'ouvrant a déplacé une longue bande continentale que l'on appelle les blocs Cimmériens. La Paléotethys était donc en train de se fermer, la Neotethys de s'ouvrir, et entre deux les blocs Cimmériens se rapprochaient du Continent Est Asiatique. Pendant ce temps, le continent Est Asiatique était aussi soumis à des tensions tectoniques. L'Océan Paléopacifique, à l'est de celui-ci, était aussi en train de subducter. Cette subduction, par roll-back, a déchiré le continent en détachant une ligne de microcontinents appelés ici « Orang Laut Terranes », séparés du continent par deux océans d'arrière arc : Song Ma et Poko. Ceux-ci sont composés de Taiwan, Palawan, Bornéo ouest, Vietnam oriental, et la partie occidentale de Sumatra. Un autre Océan s'est ouvert pratiquement au même moment dans le continent Est Asiatique : l'Océan de Nan qui, en s'ouvrant, a détaché un microcontinent appelé Shan-Thai. La fermeture de l'Océan de Nan, il y a environ 230 millions d'années a resolidarisé Shan-Thai et le continent Est Asiatique et la trace de cet événement est aujourd'hui enregistrée dans la suture (la cicatrice de l'Océan) de Nan-Uttaradit. La cause de l'ouverture de l'Océan de Nan peut soit être due à la subduction du Paléopacifique, soit aux fait que la subduction de la Paléotethys tirait le continent Est Asiatique par le phénomène du « slab-pull », soit aux deux. La subduction du Paléopacifique avait déjà crée de l'extension dans le continent Est Asiatique durant le Carbonifère Inférieur (il y a environ 340-350 millions d'années) en créant des bassins et du volcanisme, aujourd'hui enregistré en différents endroits du continent, dont la ceinture volcanique de Chiang Mai, étudiée ici. A la fin du Trias, la Paléotethys se refermait complètement, et le bloc Cimmérien de Sibumasu entrait en collision avec le continent Est Asiatique. Comme c'est souvent le cas avec les grands océans, il n'y a pas de suture proprement dite, avec des fragments de croûte océanique, pour témoigner de cet évènement. Celui-ci est visible grâce à la différence entre les sédiments du Carbonifère Supérieur et du Permieñ Inférieur de chaque domaine : dans le domaine Cimmérien ils sont de type glaciaire alors que dans le continent Est Asiatique ils témoignent d'un climat tropical. Les océans de Song Ma et Poko se sont aussi refermés au Trias, mais eux ont laissé des sutures visibles
Resumo:
Petrographic, mineralogical, and stable isotopes (delta C-13, delta O-18 values) compositions were used to characterise marbles and sedimentary carbonate rocks from central Morocco, which are considered to be a likely source of ornamental and building material from Roman time to the present day. This new data set was used in the frame of an archaeometric provenance study on Roman artefacts from the town of Thamusida (Kenitra, north Morocco), to assess the potential employment of these rocks for the manufacture of the archaeological materials. A representative set of samples from marbles and other carbonate rocks (limestone, dolostone) were collected in several quarries and outcrops in the Moroccan Meseta, in a region extending from the Meknes-Khenifra alignment to the Atlantic Ocean. All the samples were studied using a petrographic, mineralogical and geochemical methods. The petrographic and minerological investigations (optical microscopy, electron microscopy, X-ray diffraction) allowed to group the carbonate rocks in limestones, foliated limestone, diagenetic breccias and dolostone. The limestones could be further grouped as mudstones, wackestones-packstones, crinoid grainstones, oolitic grainstone and floatstones. Textural differences allowed to define marbles varieties. The stable carbon and oxygen isotope composition proved to be quite useful in the discrimination of marble sources, with apparently less discriminatory potential for carbonate rocks.
Resumo:
Résumé: Relevant du domaine des représentations, cette thèse porte sur la reconstitution du processus relatif à l'invention des notions liées au «coeur du continent » asiatique, distinguant deux phases: avant et après l'apparition de la dénomination Asie centrale. Partant de l'idée que dans le processus de création de cet objet d'investigation deux actes restent primordiaux - le découpage d'un continuum géographique et culturel et la nomination des parties extraites cette étude cherche à reconstituer selon quels critères et en fonction de quelles justifications et de quels arguments, il a été possible de parvenir, via des mots, à créer les notions centre-asiatiques, afin de faire valoir des «choses» en les représentant verbalement ou graphiquement comme réelles. Cette optique invite, dans une perspective d'histoire des sciences, à travers des images changeantes, à interroger l'Asie centrale en tant qu'objet d'étude, tel qu'il a été historiquement inventé, construit et représenté par les voyageurs et les scientifiques, sans négliger l'analyse du processus politique qui a réussi à insérer des lignes-frontières dans cet espace. Cette investigation aidera à mieux comprendre le sens épistémologique des expressions relatives à l'Asie centrale, souvent imprégnées d'une vision eurocentriste, lors de la progression des connaissances sur la région, en faisant revivre des courants de pensées multiples afin de pouvoir saisir la logique du développement des idées et comprendre quel rôle ces limites centre-asiatiques inventées, qui ne sont que la codification temporelle de certaines données, jouent dans les investigations scientifiques. Abstract: This dissertation proposes a reconstitution of the process of construction of the concepts relating to the Asia's «Heart of the Continent». It is divided into two parts: I: before the invention of the Central. Asia concept, from Antiquity until nineteenth century; II: the notion after this event. The study is mainly devoted to an epistemologic analysis of the arguments used during the delineation and the designation of this space
Resumo:
OBJECTIVES: Family studies typically use multiple sources of information on each individual including direct interviews and family history information. The aims of the present study were to: (1) assess agreement for diagnoses of specific substance use disorders between direct interviews and the family history method; (2) compare prevalence estimates according to the two methods; (3) test strategies to approximate prevalence estimates according to family history reports to those based on direct interviews; (4) determine covariates of inter-informant agreement; and (5) identify covariates that affect the likelihood of reporting disorders by informants. METHODS: Analyses were based on family study data which included 1621 distinct informant (first-degree relatives and spouses) - index subject pairs. RESULTS: Our main findings were: (1) inter-informant agreement was fair to good for all substance disorders, except for alcohol abuse; (2) the family history method underestimated the prevalence of drug but not alcohol use disorders; (3) lowering diagnostic thresholds for drug disorders and combining multiple family histories increased the accuracy of prevalence estimates for these disorders according to the family history method; (4) female sex of index subjects was associated with higher agreement for nearly all disorders; and (5) informants who themselves had a history of the same substance use disorder were more likely to report this disorder in their relatives, which entails the risk of overestimation of the size of familial aggregation. CONCLUSION: Our findings have important implications for the best-estimate procedure applied in family studies.
Resumo:
Quartz veins ranging in size from less than 50 cm length and 5 cm width to greater than 10 m in length and 5 m in width are found throughout the Central Swiss Alps. In some cases, the veins are completely filled with milky quartz, while in others, sometimes spectacular void-filling quartz crystals are found. The style of vein filling and size is controlled by host rock composition and deformation history. Temperatures of vein formation, estimated using stable isotope thermometry and mineral equilibria, cover a range of 450 degrees C down to 150 degrees C. Vein formation started at 18 to 20 Ma and continued for over 10 My. The oxygen isotope values of quartz veins range from 10 to 20 permil, and in almost all cases are equal to those of the hosting lithology. The strongly rock-buffered veins imply a low fluid/rock ratio and minimal fluid flow. In order to explain massive, nearly morromineralic quartz formation without exceptionally large fluid fluxes, a mechanism of differential pressure and silica diffusion, combined with pressure solution, is proposed for early vein formation. Fluid inclusions and hydrous minerals in late-formed veins have extremely low delta D values, consistent with meteoric water infiltration. The change from rock-buffered, static fluid to infiltration from above can be explained in terms of changes in the large-scale deformation style occurring between 20 and 15 Ma. The rapid cooling of the Central Alps identified in previous studies may be explained in part, by infiltration of cold meteoric waters along fracture systems down to depths of 10 km or more. An average water flux of 0.15 cm 3 cm(-2)yr(-1) entering the rock and reemerging heated by 40 degrees C is sufficient to cool rock at 10 km depth by 100 degrees C in 5 million years. The very negative delta D values of < -130 permil for the late stage fluids are well below the annual average values measured in meteoric water in the region today. The low fossil delta D values indicate that the Central Alps were at a higher elevation in the Neogene. Such a conclusion is supported by an earlier work, where a paleoaltitude of 5000 meters was proposed on the basis of large erratic boulders found at low elevations far from their origin.