27 resultados para Artificial neural net

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract In social insects, workers perform a multitude of tasks, such as foraging, nest construction, and brood rearing, without central control of how work is allocated among individuals. It has been suggested that workers choose a task by responding to stimuli gathered from the environment. Response-threshold models assume that individuals in a colony vary in the stimulus intensity (response threshold) at which they begin to perform the corresponding task. Here we highlight the limitations of these models with respect to colony performance in task allocation. First, we show with analysis and quantitative simulations that the deterministic response-threshold model constrains the workers' behavioral flexibility under some stimulus conditions. Next, we show that the probabilistic response-threshold model fails to explain precise colony responses to varying stimuli. Both of these limitations would be detrimental to colony performance when dynamic and precise task allocation is needed. To address these problems, we propose extensions of the response-threshold model by adding variables that weigh stimuli. We test the extended response-threshold model in a foraging scenario and show in simulations that it results in an efficient task allocation. Finally, we show that response-threshold models can be formulated as artificial neural networks, which consequently provide a comprehensive framework for modeling task allocation in social insects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The neuropathology of Alzheimer disease is characterized by senile plaques, neurofibrillary tangles and cell death. These hallmarks develop according to the differential vulnerability of brain networks, senile plaques accumulating preferentially in the associative cortical areas and neurofibrillary tangles in the entorhinal cortex and the hippocampus. We suggest that the main aetiological hypotheses such as the beta-amyloid cascade hypothesis or its variant, the synaptic beta-amyloid hypothesis, will have to consider neural networks not just as targets of degenerative processes but also as contributors of the disease's progression and of its phenotype. Three domains of research are highlighted in this review. First, the cerebral reserve and the redundancy of the network's elements are related to brain vulnerability. Indeed, an enriched environment appears to increase the cerebral reserve as well as the threshold of disease's onset. Second, disease's progression and memory performance cannot be explained by synaptic or neuronal loss only, but also by the presence of compensatory mechanisms, such as synaptic scaling, at the microcircuit level. Third, some phenotypes of Alzheimer disease, such as hallucinations, appear to be related to progressive dysfunction of neural networks as a result, for instance, of a decreased signal to noise ratio, involving a diminished activity of the cholinergic system. Overall, converging results from studies of biological as well as artificial neural networks lead to the conclusion that changes in neural networks contribute strongly to Alzheimer disease's progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distribution of socio-economic features in urban space is an important source of information for land and transportation planning. The metropolization phenomenon has changed the distribution of types of professions in space and has given birth to different spatial patterns that the urban planner must know in order to plan a sustainable city. Such distributions can be discovered by statistical and learning algorithms through different methods. In this paper, an unsupervised classification method and a cluster detection method are discussed and applied to analyze the socio-economic structure of Switzerland. The unsupervised classification method, based on Ward's classification and self-organized maps, is used to classify the municipalities of the country and allows to reduce a highly-dimensional input information to interpret the socio-economic landscape. The cluster detection method, the spatial scan statistics, is used in a more specific manner in order to detect hot spots of certain types of service activities. The method is applied to the distribution services in the agglomeration of Lausanne. Results show the emergence of new centralities and can be analyzed in both transportation and social terms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.