4 resultados para Arquitetura crustal

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ajjanahalli gold mine is spatially associated with a Late Archean craton-scale shear zone in the eastern Chitradurga greenstone belt of the Dharwar craton, India. Gold mineralization is hosted by an similar to100-m-wide antiform in a banded iron formation. Original magnetite and siderite are replaced by a peak metamorphic alteration assemblage of chlorite, stilpnomelane, minnesotaite, sericite, ankerite, arsenopyrite, pyrite, pyrrhotite, and gold at ca. 300degrees to 350degreesC. Elements enriched in the banded iron formation include Ca, Mg, C, S, An, As, Bi. Cu, Sb, Zn, Pb, Se, Ag, and Te, whereas in the wall rocks As, Cu, Zn, Bi, Ag, and An are only slightly enriched. Strontium correlates with CaO, MgO, CO2, and As, which indicates cogenetic formation of arsenopyrite and Mg-Ca carbonates. The greater extent of alteration in the Fe-rich banded iron formation layers than in the wall rock reflects the greater reactivity of the banded iron formation layers. The ore fluids, as interpreted from their isotopic composition (delta(18)O = 6.5-8.5parts per thousand; initial Sr-87/Sr-86 = 0.7068-0.7078), formed by metamorphic devolatilization of deeper levels of the Chitradurga greenstone belt. Arsenopyrite, chalcopyrite, and pyrrhotite have delta(34)S values within a narrow range between 2.1 and 2.7 per mil, consistent with a sulfur source in Chitradurga greenstone belt lithologies. Based on spatial and temporal relationships between mineralization, local structure development, and sinistral strike-slip deformation in the shear zone at the eastern contact of the Chitradurga greenstone belt, we suggest that the Ajjanahalli gold mineralization formed by fluid infiltration into a low strain area within the first-order structure. The ore fluids were transported along this shear zone into relatively shallow crustal levels during lateral terrane accretion and a change from thrust to transcurrent tectonics. Based on this model of fluid flow, exploration should focus on similar low strain areas or potentially connected higher order splays of the first-order shear zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of volcanic rocks from Alboran Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr-Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alboran Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (similar to0.5xN-MORB), especially Nb (similar to0.2xN-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. Nd-143/Nd-144 ratios fall in the same range as many island-arc and back-arc basin samples, whereas Sr-87/Sr-86 ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with (Sr-87/Sr-86)(0) up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr-Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies. The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere arising from convective thinning of over-thickened lithosphere. Our data support recent models in which subsidence is caused by westward rollback of an eastward-dipping subduction zone beneath the westemmost Mediterranean. Moreover, severance of the lithosphere at the edges of the rolling-back slab provides opportunities for locally melting lithospheric mantle, providing a possible explanation for the shoshonitic volcanism seen in northern Morocco and more sporadically in SE Spain. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol+hy-nonnative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative, sequence is exposed in the Dents de Bertol area (center of intrusion). PT-calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 degrees C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#(cpx)=83-89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The upper part of three deep seismic lines running across the Penninic Swiss Alps of Valais have been studied. Numerous reflectors illustrate the nappe structure of this internal part of the orogen. These reflectors, even at great depths (20-25 km), can be correlated with outcropping geological features and are most likely produced by lithological boundaries rather than by mylonites zones, which are hardly reflective in such an environment. Our interpretations, largely constrained by projections of the outcropping geology, have improved our knowledge of the deep structure of this segment of the Alpine belt, enhancing the importance of the backfolding and the crustal scale deformation phase which produced the Rawil-Valpelline depression and the Aar-Toce culmination. Furthermore we have here the possibility of correlating seismic patterns produced by ductile folds with the outcropping structures.