9 resultados para Armadilha de Shannon
em Université de Lausanne, Switzerland
Resumo:
AimWe take a comparative phylogeographical approach to assess whether three species involved in a specialized oil-rewarding pollination system (i.e. Lysimachia vulgaris and two oil-collecting bees within the genus Macropis) show congruent phylogeographical trajectories during post-glacial colonization processes. Our working hypothesis is that within specialized mutualistic interactions, where each species relies on the co-occurrence of the other for survival and/or reproduction, partners are expected to show congruent evolutionary trajectories, because they are likely to have followed parallel migration routes and to have shared glacial refugia. LocationWestern Palaearctic. MethodsOur analysis relies on the extensive sampling of 104 Western Palaearctic populations (totalling 434, 159 and 74 specimens of Lysimachiavulgaris, Macropiseuropaea and Macropisfulvipes, respectively), genotyped with amplified fragment length polymorphism. Based on this, we evaluated the regional genetic diversity (Shannon diversity and allele rarity index) and genetic structure (assessed using structure, population networks, isolation-by-distance and spatial autocorrelation metrics) of each species. Finally, we compared the general phylogeographical patterns obtained. ResultsContrary to our expectations, the analyses revealed phylogeographical signals suggesting that the investigated organisms demonstrate independent post-glacial trajectories as well as distinct contemporaneous demographic parameters, despite their mutualistic interaction. Main conclusionsThe mutualistic partners investigated here are likely to be experiencing distinct and independent evolutionary dynamics because of their contrasting life-history traits (e.g. dispersal abilities), as well as distinct hubs and migration routes. Such conditions would prevent and/or erase any signature of co-structuring of lineages in space and time. As a result, the lack of phylogeographical congruence driven by differences in life-history traits might have arisen irrespective of the three species having shared similar Pleistocene glacial refugia.
Resumo:
Using exome sequencing and a variant prioritization strategy that focuses on loss-of-function variants, we identified biallelic, loss-of-function CEP57 mutations as a cause of constitutional mosaic aneuploidies. CEP57 is a centrosomal protein and is involved in nucleating and stabilizing microtubules. Our findings indicate that these and/or additional functions of CEP57 are crucial for maintaining correct chromosomal number during cell division.
Resumo:
BACKGROUND: The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms. RESULTS: We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems. CONCLUSIONS: Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.
Resumo:
In Neo-Darwinism, variation and natural selection are the two evolutionary mechanisms which propel biological evolution. Our previous article presented a histogram model [1] consisting in populations of individuals whose number changed under the influence of variation and/or fitness, the total population remaining constant. Individuals are classified into bins, and the content of each bin is calculated generation after generation by an Excel spreadsheet. Here, we apply the histogram model to a stable population with fitness F(1)=1.00 in which one or two fitter mutants emerge. In a first scenario, a single mutant emerged in the population whose fitness was greater than 1.00. The simulations ended when the original population was reduced to a single individual. The histogram model was validated by excellent agreement between its predictions and those of a classical continuous function (Eqn. 1) which predicts the number of generations needed for a favorable mutation to spread throughout a population. But in contrast to Eqn. 1, our histogram model is adaptable to more complex scenarios, as demonstrated here. In the second and third scenarios, the original population was present at time zero together with two mutants which differed from the original population by two higher and distinct fitness values. In the fourth scenario, the large original population was present at time zero together with one fitter mutant. After a number of generations, when the mutant offspring had multiplied, a second mutant was introduced whose fitness was even greater. The histogram model also allows Shannon entropy (SE) to be monitored continuously as the information content of the total population decreases or increases. The results of these simulations illustrate, in a graphically didactic manner, the influence of natural selection, operating through relative fitness, in the emergence and dominance of a fitter mutant.
Resumo:
In Neo-Darwinism, variation and natural selection are the two evolutionary mechanisms which propel biological evolution. Our previous reports presented a histogram model to simulate the evolution of populations of individuals classified into bins according to an unspecified, quantifiable phenotypic character, and whose number in each bin changed generation after generation under the influence of fitness, while the total population was maintained constant. The histogram model also allowed Shannon entropy (SE) to be monitored continuously as the information content of the total population decreased or increased. Here, a simple Perl (Practical Extraction and Reporting Language) application was developed to carry out these computations, with the critical feature of an added random factor in the percent of individuals whose offspring moved to a vicinal bin. The results of the simulations demonstrate that the random factor mimicking variation increased considerably the range of values covered by Shannon entropy, especially when the percentage of changed offspring was high. This increase in information content is interpreted as facilitated adaptability of the population.
Resumo:
L'objet de ce travail est l'évaluation de l'activité de radionucléides présents à l'état de traces, par exemple dans l'environnement. Lorsque les mesures sont de courte durée, ou si les sources sont peu actives, l'analyse statistique standard ne donne plus une estimation fiable de l'activité et de son incertitude. L'introduction du concept bayesien d'a priori permet de modéliser l'information à disposition de l'observateur avant qu'il effectue la mesure. Cette information conduit à une estimation plus cohérente des grandeurs physiques recherchées. Le cadre de la théorie est tout d'abord présenté, définissant les concepts d'état, d'observation et de décision. La mesure physique est traduite par un modèle statistique qui est une probabilité de transition des états vers les observations. L'information de Fisher et celle de Shannon-Kullback sont introduites dans le but d'obtenir les a priori nécessaires au théorème de Bayes. Les modèles propres à la mesure de la radioactivité sont ensuite traités. Si l'on peut considérer l'activité comme constante, le modèle est celui de Poisson et conduit à des a priori de type gamma. Pour les grandes activités, ces deux lois se rapprochent des gaussiennes et l'on retrouve l'analyse statistique classique. Lorsque la décroissance du nombre de noyaux n'est plus négligeable, ou lors de l'évaluation de certains temps d'attente, d'autres modèles sont développés. Quelques applications sont présentées ensuite, notamment une définition cohérente des intervalles de confiance et l'estimation de l'activité de radionucléides à schéma complexe par spectrométrie gamma, où l'obtention de tout un spectre permet une analyse multidimensionnelle. Le paradigme bayesien conduit à une répartition complète et globale pour l'état du système physique mesuré. L'observateur obtient ainsi la meilleure estimation possible de l'état basée sur son modèle d'expérience et l'information préalable en sa possession.
Resumo:
BACKGROUND: Biliary tract cancer is an uncommon cancer with a poor outcome. We assembled data from the National Cancer Research Institute (UK) ABC-02 study and 10 international studies to determine prognostic outcome characteristics for patients with advanced disease. METHODS: Multivariable analyses of the final dataset from the ABC-02 study were carried out. All variables were simultaneously included in a Cox proportional hazards model, and backward elimination was used to produce the final model (using a significance level of 10%), in which the selected variables were associated independently with outcome. This score was validated externally by receiver operating curve (ROC) analysis using the independent international dataset. RESULTS: A total of 410 patients were included from the ABC-02 study and 753 from the international dataset. An overall survival (OS) and progression-free survival (PFS) Cox model was derived from the ABC-02 study. White blood cells, haemoglobin, disease status, bilirubin, neutrophils, gender, and performance status were considered prognostic for survival (all with P < 0.10). Patients with metastatic disease {hazard ratio (HR) 1.56 [95% confidence interval (CI) 1.20-2.02]} and Eastern Cooperative Oncology Group performance status (ECOG PS) 2 had worse survival [HR 2.24 (95% CI 1.53-3.28)]. In a dataset restricted to patients who received cisplatin and gemcitabine with ECOG PS 0 and 1, only haemoglobin, disease status, bilirubin, and neutrophils were associated with PFS and OS. ROC analysis suggested the models generated from the ABC-02 study had a limited prognostic value [6-month PFS: area under the curve (AUC) 62% (95% CI 57-68); 1-year OS: AUC 64% (95% CI 58-69)]. CONCLUSION: These data propose a set of prognostic criteria for outcome in advanced biliary tract cancer derived from the ABC-02 study that are validated in an international dataset. Although these findings establish the benchmark for the prognostic evaluation of patients with ABC and confirm the value of longheld clinical observations, the ability of the model to correctly predict prognosis is limited and needs to be improved through identification of additional clinical and molecular markers.