3 resultados para Apparent photosynthesis

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abiotic factors are considered strong drivers of species distribution and assemblages. Yet these spatial patterns are also influenced by biotic interactions. Accounting for competitors or facilitators may improve both the fit and the predictive power of species distribution models (SDMs). We investigated the influence of a dominant species, Empetrum nigrum ssp. hermaphroditum, on the distribution of 34 subordinate species in the tundra of northern Norway. We related SDM parameters of those subordinate species to their functional traits and their co-occurrence patterns with E. hermaphroditum across three spatial scales. By combining both approaches, we sought to understand whether these species may be limited by competitive interactions and/or benefit from habitat conditions created by the dominant species. The model fit and predictive power increased for most species when the frequency of occurrence of E. hermaphroditum was included in the SDMs as a predictor. The largest increase was found for species that 1) co-occur most of the time with E. hermaphroditum, both at large (i.e. 750 m) and small spatial scale (i.e. 2 m) or co-occur with E. hermaphroditum at large scale but not at small scale and 2) have particularly low or high leaf dry matter content (LDMC). Species that do not co-occur with E. hermaphroditum at the smallest scale are generally palatable herbaceous species with low LDMC, thus showing a weak ability to tolerate resource depletion that is directly or indirectly induced by E. hermaphroditum. Species with high LDMC, showing a better aptitude to face resource depletion and grazing, are often found in the proximity of E. hermaphroditum. Our results are consistent with previous findings that both competition and facilitation structure plant distribution and assemblages in the Arctic tundra. The functional and co-occurrence approaches used were complementary and provided a deeper understanding of the observed patterns by refinement of the pool of potential direct and indirect ecological effects of E. hermaphroditum on the distribution of subordinate species. Our correlative study would benefit being complemented by experimental approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C4 photosynthesis is an adaptation derived from the more common C3 photosynthetic pathway that confers a higher productivity under warm temperature and low atmospheric CO2 concentration [1, 2]. C4 evolution has been seen as a consequence of past atmospheric CO2 decline, such as the abrupt CO2 fall 32-25 million years ago (Mya) [3-6]. This relationship has never been tested rigorously, mainly because of a lack of accurate estimates of divergence times for the different C4 lineages [3]. In this study, we inferred a large phylogenetic tree for the grass family and estimated, through Bayesian molecular dating, the ages of the 17 to 18 independent grass C4 lineages. The first transition from C3 to C4 photosynthesis occurred in the Chloridoideae subfamily, 32.0-25.0 Mya. The link between CO2 decrease and transition to C4 photosynthesis was tested by a novel maximum likelihood approach. We showed that the model incorporating the atmospheric CO2 levels was significantly better than the null model, supporting the importance of CO2 decline on C4 photosynthesis evolvability. This finding is relevant for understanding the origin of C4 photosynthesis in grasses, which is one of the most successful ecological and evolutionary innovations in plant history.