7 resultados para Antireflection (AR)

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High precision U-Pb zircon and Ar-40/Ar-39 mica geochronological data on metagranodiorites, metagranites and mica schists from north and central Evia island (Greece) are presented in this study. U-Pb zircon ages range from 308 to 1912 Ma, and indicate a prolonged magmatic activity in Late Carboniferous. Proterozoic ages represent inherited cores within younger crystals. Muscovite Ar-40/Ar-39 plateau ages of 288 to 297 Ma are interpreted as cooling ages of the magmatic bodies and metamorphic host rocks in upper greenschist to epidote-amphibolite metamorphic conditions. The multistage magmatism had a duration between 308 and 319 hla but some older intrusions, as well as metamorphic events, cannot be excluded. Geochemical analyses and zircon typology indicate calc-alkaline affinities for the granites of central Evia and alkaline to calc-alkaline characteristics for the metagranodiorites from the northern part of the island. The new data point towards the SE continuation, in Evia and the Cyclades, of a Variscan continental crust already recognised in northern Greece (Pelagonian basement). The Late Carboniferous magmatism is viewed as a result of northward subduction of the Paleotethys under the Eurasian margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volcanic flows and tuffs interbedded with ammonite-bearing sediments directly correlatable with the stratotype section of the Bajocian stage have been dated for the first time within the Caucasus area. Three samples, each from a different section, allowed separation of well-preserved brown hornblende; these are considered reliable geochronometers in a region where subsequent volcanic activity occurred. The dated separates are V139: a volcanic layer probably near the base, V142 another layer near the top of the Lower Bajocian substage; V141 a boulder from a latest Bajocian volcanic conglomerate. From bottom to top, apparent ages at 173.5 +/- 2.6, 164.8 +/- 2.5 and 167.1 +/- 1.9 Ma (analytical uncertainty, 95% confidence level) respectively, can be calculated. The consistency of the results is obtained if the dated boulder is interpreted as derived from an underlying layer, The Bajocian-Bathonian boundary is much younger than commonly accepted and younger than 164 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mineralogical, K-Ar, Rb-Sr and stable isotope analyses have been carried out on K-white micas from Helvetic Malm limestones in order to examine their evolution during very low- to low-grade Alpine metamorphism, associated with intense ductile deformation. Metamorphic temperatures were estimated al approximately 300-degrees-C from stable isotopes (quartz-calcite thermometry), occurrence of chloritoid, and `'epizonal'' illite crystallinity index. K-white micas consist of variable mixtures of 2M, phengite and muscovite, as revealed by detailed X-ray diffraction analyses using peak decomposition of the (060, 331) spectra. K-Ar apparent ages display a strong grain-size dependence in which mainly fine-grained size fractions (< 2 mum) record Alpine ages (37-15 Ma). However, these ages provide a relative rather than an absolute chronology of the diachronous Alpine metamorphic evolution of the Helvetic nappes. The resetting of the K-Ar isotopic system of K-white micas to Alpine metamorphic conditions reflects an apparent combination of crystallization/recrystallization and radiogenic Ar-40 diffusion loss. The oxygen isotope compositions of micas (+ 15 to + 22 parts per thousand) are intermediate between detrital and O-18-enriched values expected for micas neoformed within an abundant marine carbonate matrix. No isotopic equilibrium has been reached between calcite and micas. The variable depletion of hydrogen isotope compositions (- 126 to - 82 parts per thousand) is influenced by the interaction with organic matter under closed-system conditions. Organic matter, if not removed, may also represent a serious source of error in K-Ar age determination, by introducing radiogenic Ar-40 contamination. Sr-87/Sr-86 isotope ratios of micas range from 0.70879 to 0.70902 with one outlier at 0.71794. The low values reflect Sr exchange with calcite occurring during crystallization/recrystallization of micas under closed-system conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously we determined that S81 is the highest stoichiometric phosphorylation on the androgen receptor (AR) in response to hormone. To explore the role of this phosphorylation on growth, we stably expressed wild-type and S81A mutant AR in LHS and LAPC4 cells. The cells with increased wild-type AR expression grow faster compared with parental cells and S81A mutant-expressing cells, indicating that loss of S81 phosphorylation limits cell growth. To explore how S81 regulates cell growth, we tested whether S81 phosphorylation regulates AR transcriptional activity. LHS cells stably expressing wild-type and S81A mutant AR showed differences in the regulation of endogenous AR target genes, suggesting that S81 phosphorylation regulates promoter selectivity. We next sought to identify the S81 kinase using ion trap mass spectrometry to analyze AR-associated proteins in immunoprecipitates from cells. We observed cyclin-dependent kinase (CDK)9 association with the AR. CDK9 phosphorylates the AR on S81 in vitro. Phosphorylation is specific to S81 because CDK9 did not phosphorylate the AR on other serine phosphorylation sites. Overexpression of CDK9 with its cognate cyclin, Cyclin T, increased S81 phosphorylation levels in cells. Small interfering RNA knockdown of CDK9 protein levels decreased hormone-induced S81 phosphorylation. Additionally, treatment of LNCaP cells with the CDK9 inhibitors, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole and Flavopiridol, reduced S81 phosphorylation further, suggesting that CDK9 regulates S81 phosphorylation. Pharmacological inhibition of CDK9 also resulted in decreased AR transcription in LNCaP cells. Collectively these results suggest that CDK9 phosphorylation of AR S81 is an important step in regulating AR transcriptional activity and prostate cancer cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Between the cities of Domodossola and Locarno, the complex ``Centovalli Line'' tectonic zone of the Central Alps outlines deformation phases over a long period of time (probably starting similar to 30 Ma ago) and under variable P-T conditions. The last deformation phases developed gouge-bearing faults with a general E-W trend that crosscuts the roots of the Alpine Canavese zone and the Finero ultramafic body. Kinematic indicators show that the general motion was mainly dextral associated with back thrusting towards the S. The <2 mu m clay fractions of fault gouges from Centovalli Line consist mainly of illite, smectite and chlorite with varied illite-smectite, chlorite-smectite and chlorite-serpentine mixed-layers. Constrained with the illite crystallinity index, the thermal conditions induced by the tectonic activity show a gradual trend from anchizonal to diagenetic conditions. The <2 and <0.2 mu M clay fractions, and hydrothermal K-feldspar separates all provide K-Ar ages between 14.2 +/- 2.9 Ma and roughly 0 Ma, with major episodes at about 12,8, 6 and close to 0 Ma These ages set the recurrent tectonic activity and the associated fluid circulations between Upper Miocene and Recent. On the basis of the K-Ar ages and with a thermal gradient of 25-30 degrees C/km, the studied fault zones were located at a depth of 4-7 km. If they were active until now as observed in field, the exhumation was approximately 2.5-3.0 km for the last 12 Ma with a mean velocity of 0.4 mm/y. Comparison with available models on the recent Alpine evolution shows that the tectonic activity in the area relates to a continuum of the back-thrusting movements of the Canavese Line, and/or to several late-extensional phases of the Rhone-Simplon line. The Centovalli-Val Vigezzo zone therefore represents a major tectonic zone of the Central-Western Alps resulting from different interacting tectonic events. (C) 2011 Elsevier B.V. All rights reserved.