76 resultados para Anthropomorphic phantoms

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: EOS (EOS imaging S.A, Paris, France) is an x-ray imaging system that uses slot-scanning technology in order to optimize the trade-off between image quality and dose. The goal of this study was to characterize the EOS system in terms of occupational exposure, organ doses to patients as well as image quality for full spine examinations. METHODS: Occupational exposure was determined by measuring the ambient dose equivalents in the radiological room during a standard full spine examination. The patient dosimetry was performed using anthropomorphic phantoms representing an adolescent and a five-year-old child. The organ doses were measured with thermoluminescent detectors and then used to calculate effective doses. Patient exposure with EOS was then compared to dose levels reported for conventional radiological systems. Image quality was assessed in terms of spatial resolution and different noise contributions to evaluate the detector's performances of the system. The spatial-frequency signal transfer efficiency of the imaging system was quantified by the detective quantum efficiency (DQE). RESULTS: The use of a protective apron when the medical staff or parents have to stand near to the cubicle in the radiological room is recommended. The estimated effective dose to patients undergoing a full spine examination with the EOS system was 290μSv for an adult and 200 μSv for a child. MTF and NPS are nonisotropic, with higher values in the scanning direction; they are in addition energy-dependent, but scanning speed independent. The system was shown to be quantum-limited, with a maximum DQE of 13%. The relevance of the DQE for slot-scanning system has been addressed. CONCLUSIONS: As a summary, the estimated effective dose was 290μSv for an adult; the image quality remains comparable to conventional systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whole-body counting is a technique of choice for assessing the intake of gamma-emitting radionuclides. An appropriate calibration is necessary, which is done either by experimental measurement or by Monte Carlo (MC) calculation. The aim of this work was to validate a MC model for calibrating whole-body counters (WBCs) by comparing the results of computations with measurements performed on an anthropomorphic phantom and to investigate the effect of a change in phantom's position on the WBC counting sensitivity. GEANT MC code was used for the calculations, and an IGOR phantom loaded with several types of radionuclides was used for the experimental measurements. The results show a reasonable agreement between measurements and MC computation. A 1-cm error in phantom positioning changes the activity estimation by >2%. Considering that a 5-cm deviation of the positioning of the phantom may occur in a realistic counting scenario, this implies that the uncertainty of the activity measured by a WBC is ∼10-20%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Intensity-modulated radiotherapy (IMRT) credentialing for a EORTC study was performed using an anthropomorphic head phantom from the Radiological Physics Center (RPC; RPCPH). Institutions were retrospectively requested to irradiate their institutional phantom (INSTPH) using the same treatment plan in the framework of a Virtual Phantom Project (VPP) for IMRT credentialing. MATERIALS AND METHODS: CT data set of the institutional phantom and measured 2D dose matrices were requested from centers and sent to a dedicated secure EORTC uploader. Data from the RPCPH and INSTPH were thereafter centrally analyzed and inter-compared by the QA team using commercially available software (RIT; ver.5.2; Colorado Springs, USA). RESULTS: Eighteen institutions participated to the VPP. The measurements of 6 (33%) institutions could not be analyzed centrally. All other centers passed both the VPP and the RPC ±7%/4 mm credentialing criteria. At the 5%/5 mm gamma criteria (90% of pixels passing), 11(92%) as compared to 12 (100%) centers pass the credentialing process with RPCPH and INSTPH (p = 0.29), respectively. The corresponding pass rate for the 3%/3 mm gamma criteria (90% of pixels passing) was 2 (17%) and 9 (75%; p = 0.01), respectively. CONCLUSIONS: IMRT dosimetry gamma evaluations in a single plane for a H&N prospective trial using the INSTPH measurements showed agreement at the gamma index criteria of ±5%/5 mm (90% of pixels passing) for a small number of VPP measurements. Using more stringent, criteria, the RPCPH and INSTPH comparison showed disagreement. More data is warranted and urgently required within the framework of prospective studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: A new tool to quantify visceral adipose tissue (VAT) over the android region of a total body dual-energy x-ray absorptiometry (DXA) scan has recently been reported. The measurement, CoreScan, is currently available on Lunar iDXA densitometers. The purpose of the study was to determine the precision of the CoreScan VAT measurement, which is critical for understanding the utility of this measure in longitudinal trials. DESIGN AND METHODS: VAT precision was characterized in both an anthropomorphic imaging phantom (measured on 10 Lunar iDXA systems) and a clinical population consisting of obese women (n = 32). RESULTS: The intrascanner precision for the VAT phantom across 9 quantities of VAT mass (0-1,800 g) ranged from 28.4 to 38.0 g. The interscanner precision ranged from 24.7 to 38.4 g. There was no statistical dependence on the quantity of VAT for either the inter- or intrascanner precision result (p = 0.670). Combining inter- and intrascanner precision yielded a total phantom precision estimate of 47.6 g for VAT mass, which corresponds to a 4.8% coefficient of variance (CV) for a 1 kg VAT mass. Our clinical population, who completed replicate total body scans with repositioning between scans, showed a precision of 56.8 g on an average VAT mass of 1110.4 g. This corresponds to a 5.1% CV. Hence, the in vivo precision result was similar to the phantom precision result. CONCLUSIONS: The study suggests that CoreScan has a relatively low precision error in both phantoms and obese women and therefore may be a useful addition to clinical trials where interventions are targeted towards changes in visceral adiposity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine the lower limit of dose reduction with hybrid and fully iterative reconstruction algorithms in detection of endoleaks and in-stent thrombus of thoracic aorta with computed tomographic (CT) angiography by applying protocols with different tube energies and automated tube current modulation. MATERIALS AND METHODS: The calcification insert of an anthropomorphic cardiac phantom was replaced with an aortic aneurysm model containing a stent, simulated endoleaks, and an intraluminal thrombus. CT was performed at tube energies of 120, 100, and 80 kVp with incrementally increasing noise indexes (NIs) of 16, 25, 34, 43, 52, 61, and 70 and a 2.5-mm section thickness. NI directly controls radiation exposure; a higher NI allows for greater image noise and decreases radiation. Images were reconstructed with filtered back projection (FBP) and hybrid and fully iterative algorithms. Five radiologists independently analyzed lesion conspicuity to assess sensitivity and specificity. Mean attenuation (in Hounsfield units) and standard deviation were measured in the aorta to calculate signal-to-noise ratio (SNR). Attenuation and SNR of different protocols and algorithms were analyzed with analysis of variance or Welch test depending on data distribution. RESULTS: Both sensitivity and specificity were 100% for simulated lesions on images with 2.5-mm section thickness and an NI of 25 (3.45 mGy), 34 (1.83 mGy), or 43 (1.16 mGy) at 120 kVp; an NI of 34 (1.98 mGy), 43 (1.23 mGy), or 61 (0.61 mGy) at 100 kVp; and an NI of 43 (1.46 mGy) or 70 (0.54 mGy) at 80 kVp. SNR values showed similar results. With the fully iterative algorithm, mean attenuation of the aorta decreased significantly in reduced-dose protocols in comparison with control protocols at 100 kVp (311 HU at 16 NI vs 290 HU at 70 NI, P ≤ .0011) and 80 kVp (400 HU at 16 NI vs 369 HU at 70 NI, P ≤ .0007). CONCLUSION: Endoleaks and in-stent thrombus of thoracic aorta were detectable to 1.46 mGy (80 kVp) with FBP, 1.23 mGy (100 kVp) with the hybrid algorithm, and 0.54 mGy (80 kVp) with the fully iterative algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray medical imaging is increasingly becoming three-dimensional (3-D). The dose to the population and its management are of special concern in computed tomography (CT). Task-based methods with model observers to assess the dose-image quality trade-off are promising tools, but they still need to be validated for real volumetric images. The purpose of the present work is to evaluate anthropomorphic model observers in 3-D detection tasks for low-contrast CT images. We scanned a low-contrast phantom containing four types of signals at three dose levels and used two reconstruction algorithms. We implemented a multislice model observer based on the channelized Hotelling observer (msCHO) with anthropomorphic channels and investigated different internal noise methods. We found a good correlation for all tested model observers. These results suggest that the msCHO can be used as a relevant task-based method to evaluate low-contrast detection for CT and optimize scan protocols to lower dose in an efficient way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food allergies are believed to be on the rise and currently management relies on the avoidance of the food. Hen's egg allergy is after cow's milk allergy the most common food allergy; eggs are used in many food products and thus difficult to avoid. A technological process using a combination of enzymatic hydrolysis and heat treatment was designed to produce modified hen's egg with reduced allergenic potential. Biochemical (SDS-PAGE, Size exclusion chromatography and LC-MS/MS) and immunological (ELISA, immunoblot, RBL-assays, animal model) analysis showed a clear decrease in intact proteins as well as a strong decrease of allergenicity. In a clinical study, 22 of the 24 patients with a confirmed egg allergy who underwent a double blind food challenge with the hydrolysed egg remained completely free of symptoms. Hydrolysed egg products may be beneficial as low allergenic foods for egg allergic patients to extent their diet. This article is protected by copyright. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate the feasibility of visualizing the stent lumen using coronary magnetic resonance angiography in vitro. MATERIAL AND METHODS: Nineteen different coronary stents were implanted in plastic tubes with an inner diameter of 3 mm. The tubes were positioned in a plastic container filled with gel and included in a closed flow circuit (constant flow 18 cm/sec). The magnetic resonance images were obtained with a dual inversion fast spin-echo sequence. For intraluminal stent imaging, subtraction images were calculated from scans with and without flow. Subsequently, intraluminal signal properties were objectively assessed and compared. RESULTS: As a function of the stent type, various degrees of in-stent signal attenuation were observed. Tantalum stents demonstrated minimal intraluminal signal attenuation. For nitinol stents, the stent lumen could be identified, but the intraluminal signal was markedly reduced. Steel stents resulted in the most pronounced intraluminal signal voids. CONCLUSIONS: With the present technique, radiofrequency penetration into the stents is strongly influenced by the stent material. Thesefindings may have important implicationsforfuture stent design and stent imaging strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Switzerland, individuals exposed to the risk of activity intake are required to perform regular monitoring. Monitoring consists in a screening measurement and is meant to be performed using commonly available laboratory instruments. More particularly, iodine intake is measured using a surface contamination monitor. The goal of the present paper is to report the calibration method developed for thyroid screening instruments. It consists of measuring the instrument response to a known activity located in the thyroid gland of a standard neck phantom. One issue of this procedure remains that the iodine radioisotopes have a short half-life. Therefore, the adequacy and limitations to simulate the short-lived radionuclides with so-called mock radionuclides of longer half-life were also evaluated. In light of the results, it has been decided to use only the appropriate iodine sources to perform the calibration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A technique for fast imaging of regional myocardial function using a spiral acquisition in combination with strain-encoded (SENC) magnetic resonance imaging (MRI) is presented in this paper. This technique, which is termed fast-SENC, enables scan durations as short as a single heartbeat. A reduced field of view (FOV) without foldover artifacts was achieved by localized SENC, which selectively excited the region around the heart. The two images required for SENC imaging (low- and high-tuning) were acquired in an interleaved fashion throughout the cardiac cycle to further shorten the scan time. Regional circumferential contraction and longitudinal shortening of both the left ventricle (LV) and right ventricle (RV) were examined in long- and short-axis views, respectively. The in vivo results obtained from five human subjects and five infarcted dogs are presented. The results of the fast-SENC technique in a single heartbeat acquisition were comparable to those obtained by conventional SENC in a long acquisition time. Therefore, fast-SENC may prove useful for imaging during stress or arrhythmia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coronary artery calcification (CAC) is quantified based on a computed tomography (CT) scan image. A calcified region is identified. Modified expectation maximization (MEM) of a statistical model for the calcified and background material is used to estimate the partial calcium content of the voxels. The algorithm limits the region over which MEM is performed. By using MEM, the statistical properties of the model are iteratively updated based on the calculated resultant calcium distribution from the previous iteration. The estimated statistical properties are used to generate a map of the partial calcium content in the calcified region. The volume of calcium in the calcified region is determined based on the map. The experimental results on a cardiac phantom, scanned 90 times using 15 different protocols, demonstrate that the proposed method is less sensitive to partial volume effect and noise, with average error of 9.5% (standard deviation (SD) of 5-7mm(3)) compared with 67% (SD of 3-20mm(3)) for conventional techniques. The high reproducibility of the proposed method for 35 patients, scanned twice using the same protocol at a minimum interval of 10 min, shows that the method provides 2-3 times lower interscan variation than conventional techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black-blood fast spin-echo imaging is a powerful technique for the evaluation of cardiac anatomy. To avoid fold-over artifacts, using a sufficiently large field of view in phase-encoding direction is mandatory. The related oversampling affects scanning time and respiratory chest motion artifacts are commonly observed. The excitation of a volume that exclusively includes the heart without its surrounding structures may help to improve scan efficiency and minimize motion artifacts. Therefore, and by building on previously reported inner-volume approach, the combination of a black-blood fast spin-echo sequence with a two-dimensionally selective radiofrequency pulse is proposed for selective "local excitation" small field of view imaging of the heart. This local excitation technique has been developed, implemented, and tested in phantoms and in vivo. With this method, small field of view imaging of a user-specified region in the human thorax is feasible, scanning becomes more time efficient, motion artifacts can be minimized, and additional flexibility in the choice of imaging parameters can be exploited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of copper (Cu) filtration on image quality and dose in different digital X-ray systems was investigated. Two computed radiography systems and one digital radiography detector were used. Three different polymethylmethacrylate blocks simulated the pediatric body. The effect of Cu filters of 0.1, 0.2, and 0.3 mm thickness on the entrance surface dose (ESD) and the corresponding effective doses (EDs) were measured at tube voltages of 60, 66, and 73 kV. Image quality was evaluated in a contrast-detail phantom with an automated analyzer software. Cu filters of 0.1, 0.2, and 0.3 mm thickness decreased the ESD by 25-32%, 32-39%, and 40-44%, respectively, the ranges depending on the respective tube voltages. There was no consistent decline in image quality due to increasing Cu filtration. The estimated ED of anterior-posterior (AP) chest projections was reduced by up to 23%. No relevant reduction in the ED was noted in AP radiographs of the abdomen and pelvis or in posterior-anterior radiographs of the chest. Cu filtration reduces the ESD, but generally does not reduce the effective dose. Cu filters can help protect radiosensitive superficial organs, such as the mammary glands in AP chest projections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: To determine optimum spatial resolution when imaging peripheral arteries with magnetic resonance angiography (MRA). MATERIALS AND METHODS: Eight vessel diameters ranging from 1.0 to 8.0 mm were simulated in a vascular phantom. A total of 40 three-dimensional flash MRA sequences were acquired with incremental variations of fields of view, matrix size, and slice thickness. The accurately known eight diameters were combined pairwise to generate 22 "exact" degrees of stenosis ranging from 42% to 87%. Then, the diameters were measured in the MRA images by three independent observers and with quantitative angiography (QA) software and used to compute the degrees of stenosis corresponding to the 22 "exact" ones. The accuracy and reproducibility of vessel diameter measurements and stenosis calculations were assessed for vessel size ranging from 6 to 8 mm (iliac artery), 4 to 5 mm (femoro-popliteal arteries), and 1 to 3 mm (infrapopliteal arteries). Maximum pixel dimension and slice thickness to obtain a mean error in stenosis evaluation of less than 10% were determined by linear regression analysis. RESULTS: Mean errors on stenosis quantification were 8.8% +/- 6.3% for 6- to 8-mm vessels, 15.5% +/- 8.2% for 4- to 5-mm vessels, and 18.9% +/- 7.5% for 1- to 3-mm vessels. Mean errors on stenosis calculation were 12.3% +/- 8.2% for observers and 11.4% +/- 15.1% for QA software (P = .0342). To evaluate stenosis with a mean error of less than 10%, maximum pixel surface, the pixel size in the phase direction, and the slice thickness should be less than 1.56 mm2, 1.34 mm, 1.70 mm, respectively (voxel size 2.65 mm3) for 6- to 8-mm vessels; 1.31 mm2, 1.10 mm, 1.34 mm (voxel size 1.76 mm3), for 4- to 5-mm vessels; and 1.17 mm2, 0.90 mm, 0.9 mm (voxel size 1.05 mm3) for 1- to 3-mm vessels. CONCLUSION: Higher spatial resolution than currently used should be selected for imaging peripheral vessels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper characterizes and evaluates the potential of three commercial CT iterative reconstruction methods (ASIR?, VEO? and iDose(4 ()?())) for dose reduction and image quality improvement. We measured CT number accuracy, standard deviation (SD), noise power spectrum (NPS) and modulation transfer function (MTF) metrics on Catphan phantom images while five human observers performed four-alternative forced-choice (4AFC) experiments to assess the detectability of low- and high-contrast objects embedded in two pediatric phantoms. Results show that 40% and 100% ASIR as well as iDose(4) levels 3 and 6 do not affect CT number and strongly decrease image noise with relative SD constant in a large range of dose. However, while ASIR produces a shift of the NPS curve apex, less change is observed with iDose(4) with respect to FBP methods. With second-generation iterative reconstruction VEO, physical metrics are even further improved: SD decreased to 70.4% at 0.5 mGy and spatial resolution improved to 37% (MTF(50%)). 4AFC experiments show that few improvements in detection task performance are obtained with ASIR and iDose(4), whereas VEO makes excellent detections possible even at an ultra-low-dose (0.3 mGy), leading to a potential dose reduction of a factor 3 to 7 (67%-86%). In spite of its longer reconstruction time and the fact that clinical studies are still required to complete these results, VEO clearly confirms the tremendous potential of iterative reconstructions for dose reduction in CT and appears to be an important tool for patient follow-up, especially for pediatric patients where cumulative lifetime dose still remains high.