17 resultados para Anthony Bek
em Université de Lausanne, Switzerland
Resumo:
The aim of the study was to determine the influence of the dissection of the palate during primary surgery and the type of orthognathic surgery needed in cases of unilateral total cleft. The review concerns 58 children born with a complete unilateral cleft lip and palate and treated between 1994 and 2008 at the appropriate age for orthognathic surgery. This is a retrospective mixed-longitudinal study. Patients with syndromes or associated anomalies were excluded. All children were treated by the same orthodontist and by the same surgical team. Children are divided into 2 groups: the first group includes children who had conventional primary cleft palate repair during their first year of life, with extensive mucoperiosteal undermining. The second group includes children operated on according to the Malek surgical protocol. The soft palate is closed at the age of 3 months, and the hard palate at 6 months with minimal mucoperiosteal undermining. Lateral cephalograms at ages 9 and 16 years and surgical records were compared. The need for orthognathic surgery was more frequent in the first than in the second group (60% vs 47.8%). Concerning the type of orthognathic surgery performed, 2- or 3-piece Le Fort I or bimaxillary osteotomies were also less required in the first group. Palate surgery following the Malek procedure results in an improved and simplified craniofacial outcome. With a minimal undermining of palatal mucosa, we managed to reduce the amount of patients who required an orthognathic procedure. When this procedure was indicated, the surgical intervention was also greatly simplified.
Resumo:
This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench. [Authors]
Resumo:
OBJECTIVE: To validate a revision of the Mini Nutritional Assessment short-form (MNA(R)-SF) against the full MNA, a standard tool for nutritional evaluation. METHODS: A literature search identified studies that used the MNA for nutritional screening in geriatric patients. The contacted authors submitted original datasets that were merged into a single database. Various combinations of the questions on the current MNA-SF were tested using this database through combination analysis and ROC based derivation of classification thresholds. RESULTS: Twenty-seven datasets (n=6257 participants) were initially processed from which twelve were used in the current analysis on a sample of 2032 study participants (mean age 82.3y) with complete information on all MNA items. The original MNA-SF was a combination of six questions from the full MNA. A revised MNA-SF included calf circumference (CC) substituted for BMI performed equally well. A revised three-category scoring classification for this revised MNA-SF, using BMI and/or CC, had good sensitivity compared to the full MNA. CONCLUSION: The newly revised MNA-SF is a valid nutritional screening tool applicable to geriatric health care professionals with the option of using CC when BMI cannot be calculated. This revised MNA-SF increases the applicability of this rapid screening tool in clinical practice through the inclusion of a "malnourished" category.
Resumo:
Control banding (CB) can be a useful tool for managing the potential risks of nanomaterials. The here proposed CB, which should be part of an overall risk control strategy, groups materials by hazard and emission potential. The resulting decision matrix proposes control bands adapted to the risk potential levels and helps define an action plan. If this plan is not practical and financially feasible, a full risk assessment is launched. The hazard banding combines key concepts of nanomaterial toxicology: translocation across biological barriers, fibrous nature, solubility, and reactivity. Already existing classifications specific to the nanomaterial can be used "as is." Otherwise, the toxicity of bulk or analogous substances gives an initial hazard band, which is increased if the substance is not easily soluble or if it has a higher reactivity than the substance. The emission potential bands are defined by the nanomaterials' physical form and process characteristics. Quantities, frequencies, and existing control measures are taken into account during the definition of the action plan. Control strategies range from room ventilation to full containment with expert advice. This CB approach, once validated, can be easily embedded in risk management systems. It allows integrating new toxicity data and needs no exposure data. [Authors]
Resumo:
VEGF plays an essential role in ocular angiogenic diseases including the late-stage form of AMD, the primary cause of vision loss in the western world. Over-expression of VEGF leads to development of vasculature emanating from the choroid, invading the subretinal space through breaks in Bruch's membrane. Strategies leading to long-term suppression of inappropriate ocular angiogenesis are required. A panel of 10 shRNAs targeting the coding region of human VEGF165 was tested in HEK293 cells and in the human retinal pigment epithelial cell line, ARPE-19. VEGF knock-down up to 92% was achieved by co-transfecting shRNAexpressing constructs with plasmid encoding the Renilla luciferase gene fused to the VEGF165 sequence. For in vivo delivery of the most potent shRNA cassette, both single-stranded and self-complementary rAAV vectors were packaged in serotype 8 capsids. Intramuscular administration in mice led to localized expression and 96% knock-down of endogenous VEGF. Using eGFP as a marker, efficient gene transfer of retinal pigment epithelial cells, the cells thought to be responsible for the abnormal VEGF production, was obtained by subretinal delivery of rAAV2.8 vectors. The capacity of rAAV-encoded shRNAs to silence endogenous VEGF gene expression was evaluated in the laser-induced murine model of choroidal neovascularization (CNV). In this mouse model of AMD, sizes of the CNV were found to be significantly reduced following rAAV-shRNA subretinal delivery. Thus, our results indicate that gene transfer combining AAV-mediated delivery with triggering of the endogenous RNAi pathway can be used for anti-VEGF therapy and holds great promise for the treatment of AMD.
What's so special about conversion disorder? A problem and a proposal for diagnostic classification.
Resumo:
Conversion disorder presents a problem for the revisions of DSM-IV and ICD-10, for reasons that are informative about the difficulties of psychiatric classification more generally. Giving up criteria based on psychological aetiology may be a painful sacrifice but it is still the right thing to do.
Resumo:
BACKGROUND: Strategies leading to the long-term suppression of inappropriate ocular angiogenesis are required to avoid the need for repetitive monthly injections for treatment of diseases of the eye, such as age-related macular degeneration (AMD). The present study aimed to develop a strategy for the sustained repression of vascular endothelial growth factor (VEGF), which is identified as the key player in exudative AMD. METHODS: We have employed short hairpin (sh)RNAs combined with adeno-associated virus (AAV) delivery to obtain the targeted expression of potent gene-regulatory molecules. Anti-VEGF shRNAs were analyzed in human retinal pigment epithelial (RPE) cells using Renilla luciferase screening. For in vivo delivery of the most potent shRNA, self-complementary AAV vectors were packaged in serotype 8 capsids (scAAV2/8-hU6-sh9). In vivo efficacy was evaluated either by injection of scAAV2/8-hU6-sh9 into murine hind limb muscles or in a laser-induced murine model of choroidal neovascularization (CNV) following scAAV2/8-hU6-sh9 subretinal delivery. RESULTS: Plasmids encoding anti-VEGF shRNAs showed efficient knockdown of human VEGF in RPEs. Intramuscular administration led to localized expression and 91% knockdown of endogenous murine (m)VEGF. Subsequently, the ability of AAV2/8-encoded shRNAs to impair vessel formation was evaluated in the murine model of CNV. In this model, the sizes of the CNV were significantly reduced (up to 48%) following scAAV2/8-hU6-sh9 subretinal delivery. CONCLUSIONS: Using anti-VEGF vectors, we have demonstrated efficient silencing of endogenous mVEGF and showed that subretinal administration of scAAV2/8-hU6-sh9 has the ability to impair vessel formation in an AMD animal model. Thus, AAV-encoded shRNA can be used for the inhibition of neovascularization, leading to the development of sustained anti-VEGF therapy. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
in the paper we consider the nullification number of small knots with at most 9 crossings. We establish two inequalities (Corollary 2.1) relating the nullification number to other knot invariants and properties of the knot diagram. We show that these inequalities allow us to settle the nullification number for all of the 84 prime knots with at most 9 crossings.