14 resultados para Anterior Cingulate Cortex
em Université de Lausanne, Switzerland
Resumo:
A series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons. Three populations of interneurons immunolabeled for calcium-binding proteins were analyzed quantitatively in 16-day-old rat brain sections. Treated rats showed specific reduction in parvalbumin immunoreactivity in the anterior cingulate cortex, but not for calbindin and calretinin. These results provide experimental evidence for the critical role of redox regulation in cortical development and validate this animal model used in schizophrenia research.
Resumo:
In recent years research explored different acupuncture stimulation techniques but interest has focused primarily on somatic acupuncture and on a limited number of acupoints. As regards ear Acupuncture (EA) there is still some criticism about the clinical specificity of auricular points/areas representing organs or structures of the body. The aim of this study was to verify through (Functional magnetic resonance imaging) fMRI the hypothesis of EA point specificity using two auricular points having different topographical locations and clinical significance. Six healthy volunteers underwent two experimental fMRI sessions: the first was dedicated to the stimulation of Thumb Auricular Acupoint (TAA) and the second to the stimulation of Brain Stem Auricular Acupoint (BSAA). The stimulation of the needle placed in the TAA of the left ear produced an increase in activation bilaterally in the parietal operculum, region of the secondary somatosensory area SII. Stimulation of the needle placed in the BSAA of the left ear showed a pattern that largely overlapped regions belonging to the pain matrix, as shown to be involved in previous somatic acupuncture studies but with local differences in the left amygdala, anterior cingulate cortex, and cerebellum. The differences in activation patterns between TAA and BSAA stimulation support the specificity of the two acupoints. Moreover, the peculiarity of the regions involved in BSAA stimulation compared to those involved in the pain matrix, is in accordance with the therapeutic indications of this acupoint that include head pain, dizziness and vertigo. Our results provide preliminary evidence on the specificity of two auricular acupoints; further research is warranted by means of fMRI both in healthy volunteers and in patients carrying neurological/psychiatric syndromes.
Resumo:
Résumé: L'objectif de l'étude est de caractériser la manifestation clinique d'une atteinte vasculaire cérébrale ischémique aiguë limitée au cortex insulaire, région intrigante et méconnue du cerveau humain. Dans la pratique clinique, une atteinte vasculaire aiguë limitée à l'insula, sans compromission d'autres régions cérébrales, est exceptionnelle et sa manifestation clinique neurologique est souvent non reconnue. L'étude est focalisée sur quatre patients, inscrits dans le Lausanne Stroke Registry, présentant une nouvelle atteinte vasculaire cérébrale avec une lésion unique purement limitée au cortex insulaire, objectivée à l'aide de la résonance magnétique (IRM). L'étude a mis en évidence cinq manifestations cliniques principales : 1) Troubles de la sensibilité corporelle sont révélé chez trois patients avec une atteinte insulaire postérieure (deux avec un syndrome pseudothalamique, un avec un déficit à distribution partielle). 2) Un patient avec une lésion insulaire postérieure gauche présent des troubles du goût. 3) Un syndrome pseudovestibulaire avec vertiges non rotatoires, instabilité à la marche sans nystagmus, est mis en évidence chez trois patients avec une atteinte ischémique insulaire postérieure. 4) Un patient avec atteinte de l'insula postérieure droite présente des épisodes d'hypertension artérielle d'origine cryptique. 5) Des troubles neuropsychologiques tels qu'aphasie et dysarthrie sont détectés chez les patients avec une atteinte insulaire postérieure gauche, un épisode de somatoparaphrénie est rapporté avec une atteinte insulaire postérieure droite. En conclusion, les atteintes vasculaires cérébrales ischémiques aiguës limitées au cortex insulaire postérieur peuvent se manifester principalement avec un tableau clinique caractérisé par un syndrome pseudothalamique associé à une symptomatologie pseudovertigineuse. Les lésions insulaires postérieures peuvent se manifester avec une dysarthrie et des troubles du goût, une aphasie (gauche), une somatoparaphrénie et une dysfonction hypertensive (droite). L'étude n'a pas mis en évidence de dysphagie, reportée dans les atteintes insulaires antérieures. Abstract: Objective: To characterize clinically acute insular strokes from four patients with, a first ever acute stroke restricted to the insula on MRI. Methods: The authors studied the clinical presentation of four patients with a first ever acute stroke restricted to the insula on MRI. Results: The authors found five main groups of clinical presentations: 1) somatosensory deficits in three patients with posterior insular stroke (two with a transient pseudothalamic sensory syndrome, one with partial distribution); 2) gustatory disorder in a patient with left posterior insular infarct; 3) vestibular-like syndrome, with dizziness, gait instability, and tendency to fall, but no nystagmus, in three patients with posterior insular strokes; 4) cardiovascular disturbances, consisting of hypertensive episodes in a patient with a right posterior insular infarct; and 5) neuropsychological disorders, including aphasia (left posterior insula), dysarthria, and transient somatoparaphrenia (right posterior insula). Conclusion: Strokes restricted to the posterior insula may present with pseudothalamic sensory and vestibular-like syndromes as prominent clinical manifestations, but also dysarthria and aphasia (in left lesions), somatoparaphrenia (right lesions) and gustatory dysfunction and blood pressure with hypertensive episodes in right lesions; we did not find acute dysphagia reported in anterior, insular strokes.
Resumo:
Résumé L'accident vasculaire cérébral sensoriel pur est un des syndromes lacunaires, dû à l'occlusion de petits vaisseaux cérébraux, souvent dans le cadre d'une lésion intéressant le noyau ventro-caudal du thalamus. Il produit un hémisyndrome sensitif pur, et parfois un syndrome douloureux se développe à distance de l'événement aigu. Afin d'étudier la récupération fonctionnelle dans le cortex somatosensoriel (SI) après une telle lésion dans le thalamus, un modèle de lésion excitotoxique a été développé dans le système somatosensoriel de la souris adulte, caractérisé par la présence de formations cytoarchitectoniques dans SI appelées "tonneaux". Chacun de ces tonneaux correspond à la représentation corticale d'une vibrisse du museau. L'activité métabolique a été mesurée dans SI à différents intervalles après la lésion, à l'aide de déoxyglucose marqué radioactivement. Dans les deux premiers jours suivant celle-ci, l'activité métabolique diminue de manière importante dans toutes les couches corticales, avec une atteinte plus marquée dans la couche IV, principale projection des axones thalamo-corticaux. Une récupération de l'activité métabolique se produit ensuite, d'autant plus marquée que le délai après la lésion est grand. Cette récupération s'observe dans toutes les couches coticales, les couches I et Vb récupérant plus rapidement que les couches II, III, IV, Va et VI. Cinq semaines après la lésion, l'absence des vibrisses correspondant à la partie déafférentée de SI diminue l'activité métabolique corticale de 32% et démontre l'activation par la périphérie de cette partie de l'écorce, malgré la perte des axones thalamo-corticaux provenant du noyau ventro-caudal. Des expériences de traçage rétrograde ont montré une augmentation des projections intracorticales sur la partie déafférentée de l'écorce, en particulier de longue distance, ainsi que des projections interhémisphériques, mais n'ont pas permis de mettre en évidence de nouvelle projection thalamique, indiquant une origine corticale à la récupération fonctionnelle observée. Abstract To study the degree and time course of the functional recovery in the somatosensory cortex (SI) after an excitotoxic lesion in the adult mouse thalamus, metabolic activity was determined in SI at various times points post lesion. Immediately after the lesion, metabolic activity in the thalamically deafferented part of SI was at its lowest value but increased progressively at subsequent time points. This was seen in all cortical layers, however, layers I and Vb recover more rapidly than layers II, III, IV, Va and VI. Removal of the mystacial whiskers corresponding to the deafferented area, 5 weeks after cortical recovery, produced a subsequent 32% drop in metabolic activity, demonstrating peripheral sensory activation of this part of the cortex. Tracing experiments revealed that the deafferented cortex did not receive a novel thalamic input, but cortico-cortical and contralateral barrel cortex projections to this area were reinforced. We conclude that the cortical functional recovery after a thalamic lesion is, at least partially, due to modified cortico-cortical and callosal projections to the deafferented cortical area.
Resumo:
Background and aim of the study: Patients with anterior cruciate ligament (ACL) reconstruction and femoral catheter analgesia may develop quadriceps amyotrophy. We aimed to determine whether this amyotrophy might be related to a femoral neuropathy. Material and method: After Ethical Committee approval and patients' written informed consent, 17 patients ASA I and II scheduled to undergo ACL reconstruction were recruited. An electromyography (EMG) was performed before the operation in order to exclude a femoral neuropathy. A femoral nerve catheter was inserted before the surgery with the aid of a nerve stimulator, and 20 ml of 0.5% ropivacaine was injected. The operation was done under spinal or general anaesthesia. Postoperative analgesia was provided with 0.2% ropivacaine for 72 hours, in association with oxycodone, paracetamol and ibuprofen. A second EMG was performed 4 weeks after the ACL repair. A femoral neuropathy was defined as a reduction of the surface of the motor response of more than 20%, compared to the first EMG. A third EMG was performed at 6 months if a neuropathy was present. Results: Mean age of this group of patients was 27 years old (range 18-38 y.). Among the 17 patients, 4 developed a transient femoral neuropathy (incidence of 24%) without clinical complain. Conclusion: In this study, the incidence of subclinical femoral neuropathy after ACL reconstruction is high. This lesion may be caused by the femoral catheter (mechanical damage, toxicity of local anaesthesia) or by the Tourniquet. Further studies are needed to investigate the incidence of subclinical neuropathy, according to the type of analgesia (epidural analgesia, PCA) and surgery.
Resumo:
Previous studies have demonstrated that a region in the left ventral occipito-temporal (LvOT) cortex is highly selective to the visual forms of written words and objects relative to closely matched visual stimuli. Here, we investigated why LvOT activation is not higher for reading than picture naming even though written words and pictures of objects have grossly different visual forms. To compare neuronal responses for words and pictures within the same LvOT area, we used functional magnetic resonance imaging adaptation and instructed participants to name target stimuli that followed briefly presented masked primes that were either presented in the same stimulus type as the target (word-word, picture-picture) or a different stimulus type (picture-word, word-picture). We found that activation throughout posterior and anterior parts of LvOT was reduced when the prime had the same name/response as the target irrespective of whether the prime-target relationship was within or between stimulus type. As posterior LvOT is a visual form processing area, and there was no visual form similarity between different stimulus types, we suggest that our results indicate automatic top-down influences from pictures to words and words to pictures. This novel perspective motivates further investigation of the functional properties of this intriguing region.
Resumo:
Auditory spatial functions, including the ability to discriminate between the positions of nearby sound sources, are subserved by a large temporo-parieto-frontal network. With the aim of determining whether and when the parietal contribution is critical for auditory spatial discrimination, we applied single pulse transcranial magnetic stimulation on the right parietal cortex 20, 80, 90 and 150 ms post-stimulus onset while participants completed a two-alternative forced choice auditory spatial discrimination task in the left or right hemispace. Our results reveal that transient TMS disruption of right parietal activity impairs spatial discrimination when applied at 20 ms post-stimulus onset for sounds presented in the left (controlateral) hemispace and at 80 ms for sounds presented in the right hemispace. We interpret our finding in terms of a critical role for controlateral temporo-parietal cortices over initial stages of the building-up of auditory spatial representation and for a right hemispheric specialization in integrating the whole auditory space over subsequent, higher-order processing stages.
Resumo:
The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.
Resumo:
In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip. The motor performance and the prehension's sequence (temporal order to grasp pellets from different spatial locations) were analysed for each hand. Following the surgery, transient and moderate deficits of manual dexterity per se occurred in both groups, indicating that they were not due to the dlPFC lesion (most likely related to the recording chamber implantation and/or general anaesthesia/medication). In contrast, changes of motor habit were observed for the sequential order of grasping in the two monkeys with dlPFC lesion only. The changes were more prominent in the monkey subjected to the largest lesion, supporting the notion of a specific effect of the dlPFC lesion on the motor habit of the monkeys. These observations are reminiscent of previous studies using conditional tasks with delay that have proposed a specialization of the dlPFC for visuo-spatial working memory, except that this is in a different context of "free-will", non-conditional manual dexterity task, without a component of working memory.
Resumo:
We investigated the neural basis for spontaneous chemo-stimulated increases in ventilation in awake, healthy humans. Blood oxygen level dependent (BOLD) functional MRI was performed in nine healthy subjects using T2 weighted echo planar imaging. Brain volumes (52 transverse slices, cortex to high spinal cord) were acquired every 3.9 s. The 30 min paradigm consisted of six, 5-min cycles, each cycle comprising 45 s of hypoxic-isocapnia, 45 s of isooxic-hypercapnia and 45 s of hypoxic-hypercapnia, with 55 s of non-stimulatory hyperoxic-isocapnia (control) separating each stimulus period. Ventilation was significantly (p<0.001) increased during hypoxic-isocapnia, isooxic-hypercapnia and hypoxic-hypercapnia (17.0, 13.8, 24.9 L/min respectively) vs. control (8.4 L/min) and was associated with significant (p<0.05, corrected for multiple comparisons) signal increases within a bilateral network that included the basal ganglia, thalamus, red nucleus, cerebellum, parietal cortex, cingulate and superior mid pons. The neuroanatomical structures identified provide evidence for the spontaneous control of breathing to be mediated by higher brain centres, as well as respiratory nuclei in the brainstem.
Resumo:
Purpose: To describe the evolution of retinal thickness in eyes affected with acute anterior uveitis (AAU) in the course of follow-up and to assess its correlation with severity of inflammatory activity in the anterior chamber. Methods: Design: Prospective, cohort study Setting: Institutional study Patient population: 72 eyes (affected and fellow eyes) of 36 patients Observation procedure: Patients were followed daily until beginning of resolution of inflammatory activity and weekly thereafter. Optical coherence tomography and laser flare photometry were performed at each visit. Treatment consisted of topical corticosteroids Main outcome measures: Retinal thickness of affected eyes, difference in retinal thickness between affected and fellow eyes and their evolution in time, association between maximal retinal thickness and initial laser flare photometry. Results: Difference in retinal thickness between affected and fellow eyes became significant on average seven days from baseline and remained so through-out follow-up (p<0.001). There was a steep increase in retinal thickness of affected eyes followed by a progressive decrease after reaching a peak value. Maximal difference in retinal thickness between affected and fellow eyes was observed between 17 and 25 days from baseline and exhibited a strong, positive correlation with initial laser flare photometry values (p=0.015). Conclusions: Retinal thickness in eyes affected with AAU presents a steep increase over 3 to 4 weeks and then gradually decreases. Severity of inflammation at baseline predicts the amount of retinal thickening in affected eyes. A characteristic pattern of temporal response of retinal anatomy to inflammatory stimuli seems to arise.
Resumo:
This study was undertaken to determine how dopamine influences cortical development. It focused on morphogenesis of GABAergic neurons that contained the calcium-binding protein parvalbumin (PV). Organotypic slices of frontoparietal cortex were taken from neonatal rats, cultured with or without dopamine, harvested daily (4-30 d), and immunostained for parvalbumin. Expression of parvalbumin occurred in the same regional and laminar sequence as in vivo. Expression in cingulate and entorhinal preceded that in lateral frontoparietal cortices. Laminar expression progressed from layer V to VI and finally II-IV. Somal labeling preceded fiber labeling by 2 d. Dopamine accelerated PV expression. In treated slices, a dense band of PV-immunoreactive neurons appeared in layer V at 7 d in vitro (DIV), and in all layers of frontoparietal cortex at 14 DIV, whereas in control slices such labeling did not appear until 14 and 21 DIV, respectively. The laminar distribution and dendritic branching of PV-immunoreactive neurons were quantified. More labeled neurons were in the superficial layers, and their dendritic arborizations were significantly increased by dopamine. Treatment with a D1 receptor agonist had little effect, whereas a D2 agonist mimicked dopamine's effects. Likewise, the D2 but not the D1 antagonist blocked dopamine-induced changes, indicating that they were mediated primarily by D2 receptors. Parvalbumin expression was accelerated by dopaminergic reinnervation of cortical slices that were cocultured with mesencephalic slices. Coapplication of the glutamate NMDA receptor antagonist MK801 or AP5 blocked dopamine-induced increases in dendritic branching, suggesting that changes were mediated partly by interaction with glutamate to alter cortical excitability.