5 resultados para Antarctica
em Université de Lausanne, Switzerland
Resumo:
The South America-Antarctica plate system shows many oceanic accretionary systems and subduction zones that initiated and then stopped. To better apprehend the evolution of the system, geodynamic reconstructions (global) have been created from Jurassic (165 Ma) to present, following the techniques used at the University of Lausanne. However, additional synthetic magnetic anomalies were used to refine the geodynamics between 33 Ma and present. The reconstructions show the break up of Gondwana with oceanisation between South America (SAM) and Antarctica (ANT), together with the break off of `Andean' geodynamical units (GDUs). We propose that oceanisation occurs also east and south of the Scotian GDUs. Andean GDUs collide with other GDUs crossing the Pacific. The west coast of SAM and ANT undergo a subsequent collision with all those GDUs between 103 Ma and 84 Ma, and the Antarctic Peninsula also collides with Tierra del Fuego. The SAM-ANT plate boundary experienced a series of extension and shortening with large strike-slip component, culminating with intra-oceanic subduction leading to the presence of the `V-' and anomalies in the Weddell Sea. From 84 Ma, a transpressive collision takes place in the Scotia region, with active margin to the east. As subduction propagates northwards into an old and dense oceanic crust, slab roll-back initiates, giving rise to the western Scotia Sea and the Powell Basin opening. The Drake Passage opens. As the Scotian GDUs migrate eastwards, there is enough space for them to spread and allow a north-south divergence with a spreading axis acting simultaneously with the western Scotia ridge. Discovery Bank stops the migration of South Orkney and `collides with' the SAM-ANT spreading axis, while the northern Scotian GDUs are blocked against the Falkland Plateau and the North-East Georgia Rise. The western and central Scotia and the Powell Basin spreading axes must cease, and the ridge jumps to create the South Sandwich Islands Sea. The Tierra del Fuego-Patagonia region has always experienced mid-oceanic ridge subduction since 84 Ma. Slab window location is also presented (57-0 Ma), because of its important implication for heat flux and magmatism. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis x Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.
Resumo:
Accreted terranes, comprising a wide variety of Late Jurassic and Early Cretaceous igneous and sedimentary rocks are an important feature of Cuban geology. Their characterization is helpful for understanding Caribbean paleogeography. The Guaniguanico terrane (western Cuba) is formed by upper Jurassic platform sediments intruded by microgranular dolerite dykes. The geochemical characteristics of the dolerite whole rock samples and their minerals (augitic clinopyroxene, labradorite and andesine) are consistent with a tholeiitic affinity. Major and trace element concentrations as well as Nd, Sr and Pb isotopes show that these rocks also have a continental affinity. Sample chemistry indicates that these lavas are similar to a low Ti-P2O5 (LTi) variety of continental flood basalts (CFB) similar to the dolerites of Ferrar (Tasmania). They derived from mixing of a lithospheric mantle Source and an asthenopheric component similar to E-MORB with minor markers of crustal contamination and sediment assimilation. However, the small quantity of Cuban magmatic rocks, similarly to Tasmania, Antarctica and Siberia differs from other volumetrically important CFB occurrences Such as Parana and Deccan. These dolerites are dated as 165-150 Ma and were emplaced during the separation of the Yucatan block from South America. They could in fact be part of the Yucatan-South America margin through which the intrusive system was emplaced and which was later accreted to the Cretaceous arc of central Cuba and to the Palaeogene arc of eastern Cuba. These samples could therefore reflect the pre-rift stage between North and South America and the opening of the gulf of Mexico.
Resumo:
A full global geodynamical reconstruction model has been developed at the University of Lausanne over the past 20 years, and is used herein to re-appraise the evolution of the Australides from 600 to 200 Ma. Geological information of geodynamical interest associated with constraints on tectonic plate driving forces allow us to propose a consistent scenario for the evolution of Australia-Antarctica-proto-Pacific system. According to our model, most geodynamic units (GDUs) of the Australides are exotic in origin, and many tectonic events of the Delamerian Cycle, Lachlan SuperCycle, and New England SuperCycle are regarded as occurring off-shore Gondwana.
Resumo:
The present work, derived from a full global geodynamic reconstruction model over 600 Ma and based on a large database, focuses herein on the interaction between the Pacific, Australian and Antarctic plates since 200 Ma, and proposes integrated solutions for a coherent, physically consistent scenario. The evolution of the Australia-Antarctica-West Pacific plate system is dependent on the Gondwana fit chosen for the reconstruction. Our fit, as defined for the latest Triassic, implies an original scenario for the evolution of the region, in particular for the "early" opening history of the Tasman Sea. The interaction with the Pacific, moreover, is characterised by many magmatic arc migrations and ocean openings, which are stopped by arc-arc collision, arc-spreading axis collision, or arc-oceanic plateau collision, and subduction reversals. Mid-Pacific oceanic plateaus created in the model are much wider than they are on present-day maps, and although they were subducted to a large extent, they were able to stop subduction. We also suggest that adduction processes (i.e., re-emergence of subducted material) may have played an important role, in particular along the plate limit now represented by the Alpine Fault in New Zealand.