10 resultados para Angora goat.
em Université de Lausanne, Switzerland
Resumo:
Fifty-three patients with histologically proven carcinoma were injected with highly purified [131I]-labeled goat antibodies or fragments of antibodies against carcinoembryonic antigen (CEA). Each patient was tested by external photoscanning 4, 24, 36 and 48 h after injection. In 22 patients (16 of 38 injected with intact antibodies, 5 of 13 with F(ab')2 fragments and 1 of 2 with Fab' fragments), an increased concentration of 131I radioactivity corresponding to the previously known tumor location was detected by photoscanning 36-48 h after injection. Blood pool and secreted radioactivity was determined in all patients by injecting 15 min before scanning, [99mTc]-labeled normal serum albumin and free 99mTc04-. The computerized subtraction of 99mTc from 131I radioactivity enhanced the definition of tumor localization in the 22 positive patients. However, in spite of the computerized subtraction, interpretation of the scans remained doubtful for 12 patients and was entirely negative for 19 additional patients. In order to provide a more objective evaluation for the specificity of the tumor localization of antibodies, 14 patients scheduled for tumor resection were injected simultaneously with [131I]-labeled antibodies or fragments and with [125I]-labeled normal goat IgG or fragments. After surgery, the radioactivity of the two isotopes present either in tumor or adjacent normal tissues was measured in a dual channel scintillation counter. The results showed that the antibodies or their fragments were 2-4 times more concentrated in the tumor than in the normal tissues. In addition, it was shown that the injected antibodies formed immune complexes with circulating CEA and that the amount of immune complexes detectable in serum was roughly proportional to the level of circulating CEA.
Resumo:
Archaeological leather samples recovered from the ice field at the Schnidejoch Pass (altitude 2756 m amsl) in the western Swiss Alps were studied using optical, chemical molecular and isotopic (delta(13)C and delta(15)N of the bulk leather, and compound-specific delta(13)C analyses of the organic-solvent extracted fatty acids) methods to obtain insight into the origin of the leather and ancient tanning procedures. For comparison, leathers from modern native animals in alpine environment (red deer, goat, sheep, chamois, and calf/cow) were analyzed using the same approach. Optical and electron microscopically comparisons of Schnidejoch and modern leathers showed that the gross structure (pattern of collagen fibrils and intra-fibrils material) of archaeological leather had survived essentially intact for five millennia. The SEM studies of the hairs from the most important archaeological find, a Neolithic leather legging, show a wave structure of the hair cuticle, which is a diagnostic feature for goatskins. The variations of the bulk delta(13)C and delta(15)N values, and delta(13)C values of the main fatty acids are within the range expected for pre-industrial temperate C(3) environment. The archaeological leather samples contain a mixture of indigenous (from the animal) and exogenous plant/animal lipids. An important amount of waxy n-alkanes, n-alkan-1-ols and phytosterols (beta-sitosterol, sitostanol) in all samples, and abundant biomarker of conifers (nonacosan-10-01) in the legging leathers clearly indicate that the Neolithic people were active in a subalpine coniferous forest, and that they used an aqueous extract of diverse plant material for tanning leather. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The lanthanide binuclear helicate [Eu(2)(L(C2(CO(2)H)))(3)] is coupled to avidin to yield a luminescent bioconjugate EuB1 (Q = 9.3%, tau((5)D(0)) = 2.17 ms). MALDI/TOF mass spectrometry confirms the covalent binding of the Eu chelate and UV-visible spectroscopy allows one to determine a luminophore/protein ratio equal to 3.2. Bio-affinity assays involving the recognition of a mucin-like protein expressed on human breast cancer MCF-7 cells by a biotinylated monoclonal antibody 5D10 to which EuB1 is attached via avidin-biotin coupling demonstrate that (i) avidin activity is little affected by the coupling reaction and (ii) detection limits obtained by time-resolved (TR) luminescence with EuB1 and a commercial Eu-avidin conjugate are one order of magnitude lower than those of an organic conjugate (FITC-streptavidin). In the second part of the paper, conditions for growing MCF-7 cells in 100-200 microm wide microchannels engraved in PDMS are established; we demonstrate that EuB1 can be applied as effectively on this lab-on-a-chip device for the detection of tumour-associated antigens as on MCF-7 cells grown in normal culture vials. In order to exploit the versatility of the ligand used for self-assembling [Ln(2)(L(C2(CO(2)H)))(3)] helicates, which sensitizes the luminescence of both Eu(III) and Tb(III) ions, a dual on-chip assay is proposed in which estrogen receptors (ERs) and human epidermal growth factor receptors (Her2/neu) can be simultaneously detected on human breast cancer tissue sections. The Ln helicates are coupled to two secondary antibodies: ERs are visualized by red-emitting EuB4 using goat anti-mouse IgG and Her2/neu receptors by green-emitting TbB5 using goat anti-rabbit IgG. The fact that the assay is more than 6 times faster and requires 5 times less reactants than conventional immunohistochemical assays provides essential advantages over conventional immunohistochemistry for future clinical biomarker detection.
Resumo:
A solid-phase enzyme immunoassay using both mouse monoclonal and goat polyclonal antibodies against carcinoembryonic antigen (CEA) was developed. The assay detects 0.6 to 1.2 ng of CEA per ml of serum and has 3 incubation steps which can be performed in 1 day. Polystyrene balls coated with polyclonal goat anti-CEA antibodies are first incubated with heat-extracted serum samples. Bound CEA is then detected by addition of mouse monoclonal antibodies, followed by goat IgG anti-mouse IgG1 coupled to alkaline phosphatase. Results with this enzyme immunoassay using monoclonal antibodies (M-EIA) have been compared with those obtained by the conventional inhibition radioimmunoassay (RIA) using goat antiserum. Three hundred and eighty serum samples from 167 patients with malignant or non-malignant diseases and from 134 normal individuals with or without heavy smoking habits were analyzed by the 2 assays. Excellent correlation between the results of the 2 assays was obtained, but the M-EIA, using monoclonal antibodies from a single hybridoma, did not discriminate better than the conventional RIA between CEA produced by different types of carcinoma and between CEA associated with malignant or non-malignant diseases. Follow-up studies of several patients by sequential CEA determinations with the 2 assays showed that the M-EIA was as accurate as the RIA for the detection of tumor recurrences.
Resumo:
Carcinoembryonic antigen (CEA) was identified in perchloric acid (PCA)_extract from normal colon mucosa by 2 immunological criteria: a line of identity in double diffusion and a parallel inhibition curve in radioimmunoassay (RIA), both with reference colon carcinoma-CEA (CEA-Tu). The average concentration of CEA in normal colon mucosa (CEA-No) was 35 times lower than in primary large bowel carcinomas and 230 times lower than in metastatic colon or rectum carcinomas. CEA-No was purified from PCA extracts of normal colon mucosa by Sephadex G-200 filtration and immunoadsorbent columns. Purified CEA-No had quatitatively the same inhibition activity in RIA as the British Standard CEA coded 73/601. Purified CEA-No was labelled with 125I. The percentage of binding of labelled CEA-No to a specific goat anti-CEA-Tu antiserum was similar to that of CEA-Tu. Labelled CEA-No could be used as radioactive tracer in RIA as well as labelled CEA-Tu. The physico-chemical properties of purified CEA-Tu as demonstrated by Sepharose 6 B filtration, SDS Polyacrylamide gel analysis and cesium chloride density gradient, were found to be almost identical to those of reference CEA-Tu. Preliminary results showed that CEA-No and CEA-Tu contained the same types of carbohydrates in similar proportions. A rabbit antiserum against CEA-No was obtained which demonstrated the same specificity as conventional anti-CEA-Tu antisera.
Resumo:
Caprine and ovine IgA were identified by cross-reaction with anti-human and anti-bovine IgA sera in colostrum, mature milk, saliva, urine and serum. Secretory component (SC) was shown in the free form and associated with polymeric serum IgA in secretions. Mean molecular weights were determined for the IgA and the free secretory components. The high IgA content of saliva suggested that it was a major secretory immunoglobulin in these species. Traces of secretory IgA were also found in normal sera but most of the serum IgA had no secretory determinant. Secretory IgA, serum IgA and free secretory component were purified. Levels of the sheep and goat immunoglobulins were measured in various fluids.
Resumo:
Antisera highly specific for carcinoembryonic antigen (CEA) from New Zealand White rabbits and a goat reacted strongly in antibody binding tests with cultured tumor cell lines, irrespective of the ability of the cell lines to produce CEA. The most reactive were colon carcinoma and melanoma cell lines, the former known to produce CEA and the latter not associated with CEA production. The reactivity was not diminished by absorption with perchloric acid extracts of normal lung or spleen, whereas absoprtion with purified CEA preparations abolished the reactivity. Quantitative absorption studies indicated that reactivity against CEA-producing cell lines could be totally removed by absorption with other CEA-producing lines but not with melanoma cell lines. Reactivity against melanoma cell lines could be completely removed by colon carcinoma cells as well as by melanoma cells. Antisera raised against purified CEA, after absorption with extracts of normal lung, still contained two populations of antibodies, one that binds a newly described antigen cross-reacting with CEA which is present on melanoma cells.
Resumo:
Purified monoclonal antibodies (Mab) produced by 3 hybridomas and reacting with 3 different epitopes of carcinoembryonic antigen (CEA) were used in a solid phase enzyme immunoassay. Two Mabs were physically adsorbed to polystyrene balls and the third Mab was coupled to alkaline phosphatase using the bifunctional reagent N-succinimidyl-3-(2-pyridyldithio)-propionate. During a first incubation, CEA from heat-extracted serum samples was immunoadsorbed to the antibody coated balls. After washing of the balls, bound CEA was detected by a second incubation with the enzyme coupled Mab. The sensitivity of the assay was 0.6 ng per ml of serum. A total of 196 serum samples from patients with various types of carcinoma, with liver cirrhosis, or from healthy blood donors with or without smoking habits, were tested. The results obtained with the monoclonal enzyme immunoassay (M-EIA) were compared with those obtained with perchloric acid extracts of the same serum samples tested by an inhibition radioimmunoassay using conventional goat anti-CEA antiserum. There was an excellent correlation between the two assays. In particular, the new M-EIA gave good results for the detection of tumor recurrences in the follow-up of colon carcinoma patients. However, despite the use of exclusively monoclonal antibodies the new assay detected a similar percentage of slightly elevated CEA values as the conventional assay in patients with non-malignant disease, suggesting that the CEA associated with non-malignant diseases is immunologically identical to the CEA released by colon carcinoma.
Resumo:
Purified, [131I]-labeled goat antibodies against carcinoembryonic antigen, which have been shown to localize in human carcinoma in nude mice, were injected into 27 patients with carcinoma. Patients were scanned with a scintillation camera at various intervals. In 11 patients, radioactivity was detectable in the tumor 48 hours after injection. Computerized subtraction of blood-pool radioactivity provided clearer pictures in positive cases, but in 16 patients the scans remained doubtful or negative. To study the specificity of [131I]-antibody localization, we gave some patients simultaneous injections of [125I]-labeled normal IgG. Both isotopes were measured by means of scintillation counting in tumors and normal tissues recovered after surgery. The results demonstrated that only the anti-CEA antibodies localized in tumors. However, the total antibody-derived radioactivity in the tumor was only about 0.001 of the injected dose. We conclude that, despite the present demonstration of specificity, this method of tumor detection is not yet clinically useful.