179 resultados para Androgen Independance, Castration-Resistant, Androgen Receptor, shRNA, Tumor Progression
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: The EGF receptor (EGFR) is overexpressed in the majority of metastatic castration-resistant prostate cancers (mCRPC) and might represent a valid therapeutic target. The combination of docetaxel and cetuximab, the monoclonal antibody against EGFR, has not been tested in patients with prostate cancer. EXPERIMENTAL DESIGN: Patients with mCRPC progressing during or within 90 days after at least 12 weeks of docetaxel were included in this phase II trial. Treatment consisted of docetaxel (75 mg/m(2) every 3 weeks or 35 mg/m(2) on days 1, 8, 15 every 4 weeks) in combination with cetuximab (400 mg/m(2) on day 1 and then 250 mg/m(2) weekly). The primary endpoint was progression-free survival (PFS) at 12 weeks defined as the absence of prostate-specific antigen (PSA), radiographic, or clinical progression. Evaluation of known biomarkers of response and resistance to cetuximab (EGFR, PTEN, amphiregulin, epiregulin) was conducted. RESULTS: Thirty-eight patients were enrolled at 15 Swiss centers. Median age was 68 years and median PSA was 212 ng/mL. PFS at 12 weeks was 34% [95% confidence interval (CI), 19%-52%], PFS at 24 weeks was 20%, and median overall survival (OS) was 13.3 months (95% CI, 7.3-15.4). Seven patients (20%) had a confirmed ≥ 50% and 11 patients (31%) a confirmed ≥ 30% PSA decline. About 47% of enrolled patients experienced grade 3 and 8% grade 4 toxicities. A significantly improved PFS was found in patients with overexpression of EGFR and persistent activity of PTEN. CONCLUSIONS: EGFR inhibition with cetuximab might improve the outcome of patients with mCRPC. A potential correlation between EGFR overexpression, persistent expression of PTEN, and EGFR inhibition should be investigated further.
Resumo:
The development and use of chemotherapy for patients with prostate cancer was slow and modest in comparison with other solid tumor sites. While many cytotoxic agents and multiple drug combinations were tested during the 1980, the first recognized drug for men with metastatic castration-resistant prostate cancer (mCRPC) was mitoxantrone combined with prednisone in 1996. Mitoxantrone showed an improvement in quality of life and pain compared to men treated with prednisone alone. In 2004, two randomized controlled trials found docetaxel superior to mitoxantrone in PSA response and survival. Despite the somewhat higher side effect rate, quality of life and pain were also improved with docetaxel. Unfortunately only about every second man benefits from this treatment and there are no approved criteria to select patients with better chances of response. It takes about 3 months of treatment to identify non-responders and all patients will ultimately progress and most of them will die of prostate cancer. Many men with mCRPC were treated with mitoxantrone after progression on docetaxel without a strong evidence for such a choice. More recently, the benefit of a second-line chemotherapy was addressed within a randomized controlled trial. A new taxane, cabazitaxel, was found superior to mitoxantrone in terms of overall survival despite the previous treatment with docetaxel and therefore recently approved in this indication. The most important challenges and opportunities for future studies will be the combination of chemotherapy with hormonal or non-hormonal targeted agents, the establishment of treatment algorithms to best sequence docetaxel and cabazitaxel and non-cytotoxic agents. Patient selection criteria as well as early biomarkers of response or resistance would also be important for patients and clinicians. Toxicity and quality of life are particular important aspects of drug development in current and future studies which aim to improve treatment options in this frequently elderly patient population.
Resumo:
PURPOSE: We conducted a phase I multicenter trial in naïve metastatic castrate-resistant prostate cancer patients with escalating inecalcitol dosages, combined with docetaxel-based chemotherapy. Inecalcitol is a novel vitamin D receptor agonist with higher antiproliferative effects and a 100-fold lower hypercalcemic activity than calcitriol. EXPERIMENTAL DESIGN: Safety and efficacy were evaluated in groups of three to six patients receiving inecalcitol during a 21-day cycle in combination with docetaxel (75 mg/m2 every 3 weeks) and oral prednisone (5 mg twice a day) up to six cycles. Primary endpoint was dose-limiting toxicity (DLT) defined as grade 3 hypercalcemia within the first cycle. Efficacy endpoint was ≥30% PSA decline within 3 months. RESULTS: Eight dose levels (40-8,000 μg) were evaluated in 54 patients. DLT occurred in two of four patients receiving 8,000 μg/day after one and two weeks of inecalcitol. Calcemia normalized a few days after interruption of inecalcitol. Two other patients reached grade 2, and the dose level was reduced to 4,000 μg. After dose reduction, calcemia remained within normal range and grade 1 hypercalcemia. The maximum tolerated dose was 4,000 μg daily. Respectively, 85% and 76% of the patients had ≥30% PSA decline within 3 months and ≥50% PSA decline at any time during the study. Median time to PSA progression was 169 days. CONCLUSION: High antiproliferative daily inecalcitol dose has been safely used in combination with docetaxel and shows encouraging PSA response (≥30% PSA response: 85%; ≥50% PSA response: 76%). A randomized phase II study is planned.
Resumo:
There is no registered treatment (ttr) for pts with mCRPC who have progressive disease during or shortly after docetaxel (doc). EGFR overexpression increases in prostate cancer during the course of the disease. We investigated efficacy and safety of the combination of the monoclonal EGFR antibody cetuximab (cet) and doc in pts with mCRPC who are doc-refractory. Methods: Pts with mCRPC progressing during or < 90 days after at least 12 weeks of doc were included. Ttr consisted of the same doc regimen as prior to progression (35mg/m2 d1,8,15 q4w or 75mg/m2 q3w) in combination with cet (400mg/m2 d1, then 250mg/m2 weekly). Primary endpoint was progression free survival (PFS) at 12 weeks defined as absence of PSA progression or progression of metastases (mets). Secondary endpoints included toxicity, PFS at 24 weeks, PSA response, response of measureable disease and overall survival. 35 pts were needed in a Simon's two stage optimal design with a power of 90% and a significance level of 5% in order to test PFS rate at 12 weeks of £10% vs ?30%. Results: 35 evaluable pts were enrolled at 15 Swiss centers between 7/08 and 9/09. Median follow up was 14.8 months. Confirmed PFS at 12 weeks was 34% (95%CI 19-52%), PFS at 24 weeks was 20% and overall survival was 12.0 months (95%CI 7.1 -15.6). 20% (7/35) had a confirmed decline in PSA ? 50% and 31% (11/35) had a confirmed PSA decline ? 30%. Of pts with measurable disease (n=24) PR, SD and PD at week 12 was 4%, 54% and 25%, respectively (17% not evaluable). 3/9 (33%) pts with PDduring last doc ttr before inclusion reached the primary endpoint compared to 7/18 (39%) with PR or SD to last doc. 54% of evaluable pts experienced grade 3 and 6% grade 4 toxicity. Discussion: The result of the primary endpoint was promising in this first trial to test cet in combination with doc in pts with docetaxel-refractory mCRPC. Because this goal was achieved in such a highly pretreated pts population it appears that inhibition of the EGFR pathway may play a more important and persistent role in the treatment of prostate cancer than perceived so far. Further research is therefore warranted. Disclosure: R. Cathomas: - Membership on advisory board for sanofi aventis (suisse) and Merck. S. Gillessen: - Membership in advisory board for Sanofi Aventis. All other authors have declared no conflicts of interest.
Resumo:
Natural killer (NK) cells have originally been identified based on their capacity to kill transformed cells in a seemingly non-specific fashion. Over the last 15 years, knowledge on receptor ligand systems used by NK cells to specifically detect transformed cells has been accumulating rapidly. One of these receptor ligand systems, the NKG2D pathway, has received particular attention, and now serves as a paradigm for how the immune system is able to gather information about the health status of autologous host cells. In addition to its significance on NK cells, NKG2D, as well as other NK cell receptors, play significant roles on T cells. This review aims at summarizing recent insights into the regulation of NKG2D function, the control over NKG2D ligand expression and the role of NKG2D in tumor immunity. Finally, we will discuss first attempts to exploit NKG2D function to improve immunity to tumors.
Resumo:
The molecular mechanisms controlling the progression of melanoma from a localized tumor to an invasive and metastatic disease are poorly understood. In the attempt to start defining a functional protein profile of melanoma progression, we have analyzed by LC-MS/MS the proteins associated with detergent resistant membranes (DRMs), which are enriched in cholesterol/sphingolipids-containing membrane rafts, of melanoma cell lines derived from tumors at different stages of progression. Since membrane rafts are involved in several biological processes, including signal transduction and protein trafficking, we hypothesized that the association of proteins with rafts can be regulated during melanoma development and affect protein function and disease progression. We have identified a total of 177 proteins in the DRMs of the cell lines examined. Among these, we have found groups of proteins preferentially associated with DRMs of either less malignant radial growth phase/vertical growth phase (VGP) cells, or aggressive VGP and metastatic cells suggesting that melanoma cells with different degrees of malignancy have different DRM profiles. Moreover, some proteins were found in DRMs of only some cell lines despite being expressed at similar levels in all the cell lines examined, suggesting the existence of mechanisms controlling their association with DRMs. We expect that understanding the mechanisms regulating DRM targeting and the activity of the proteins differentially associated with DRMs in relation to cell malignancy will help identify new molecular determinants of melanoma progression.
Resumo:
The kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule-based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently being studied in clinical trials and provide new opportunities for the development of novel anticancer therapeutics. RNA interference (RNAi) may represent a powerful strategy to interfere with key molecular pathways involved in cancer. In this study, we have established an efficient method for intratumoral delivery of siRNA. We evaluated short interfering RNA (siRNA) duplexes targeting luciferase as surrogate marker or KSP sequence. To examine the potential feasibility of RNAi therapy, the siRNA was transfected into pre-established lesions by means of intratumor electro-transfer of RNA therapeutics (IERT). This technology allowed cell permeation of the nucleic acids and to efficiently knock down gene expression, albeit transiently. The KSP-specific siRNA drastically reduced outgrowth of subcutaneous melanoma and ovarian cancer lesions. Our results show that intratumoral electro-transfer of siRNA is feasible and KSP-specific siRNA may provide a novel strategy for therapeutic intervention. J. Cell. Physiol. 228: 58-64, 2013. © 2012 Wiley Periodicals, Inc.
Resumo:
Prostate cancer is the most common carcinoma in the male population. In its initial stage, the disease is androgen-dependent and responds therapeutically to androgen deprivation treatment but it usually progresses after a few years to an androgen-independent phase that is refractory to hormonal manipulations. The proteasome is a multi-unit protease system that regulates the abundance and function of a significant number of cell proteins, and its inhibition results in cancer cell growth inhibition and apoptosis and is already exploited in the clinic with the use of proteasome inhibitor bortezomib in multiple myeloma. In order to be recognized by the proteasome, a target protein needs to be linked to a chain of the small protein ubiquitin. In this paper, we review the role of ubiquitin-proteasome system (UPS) in androgen receptor-dependent transcription as well as in the castration resistant stage of the disease, and we discuss therapeutic opportunities that UPS inhibition offers in prostate cancer.
Resumo:
Androgen receptor (AR) signaling is a key driver of prostate cancer (PC). While androgen-deprivation therapy is transiently effective in advanced disease, tumors often progress to a lethal castration-resistant state (CRPC). We show that recurrent PC-driver mutations in speckle-type POZ protein (SPOP) stabilize the TRIM24 protein, which promotes proliferation under low androgen conditions. TRIM24 augments AR signaling, and AR and TRIM24 co-activated genes are significantly upregulated in CRPC. Expression of TRIM24 protein increases from primary PC to CRPC, and both TRIM24 protein levels and the AR/TRIM24 gene signature predict disease recurrence. Analyses in CRPC cells reveal that the TRIM24 bromodomain and the AR-interacting motif are essential to support proliferation. These data provide a rationale for therapeutic TRIM24 targeting in SPOP mutant and CRPC patients.
Resumo:
PURPOSE: Pancreatic carcinoma is highly resistant to therapy. Epidermal growth factor receptor (EGFR) and HER2 have been reported to be both dysregulated in this cancer. To evaluate the in vivo effect of binding both EGFR and HER2 with two therapeutic humanized monoclonal antibodies (mAb), we treated human pancreatic carcinoma xenografts, expressing high EGFR and low HER2 levels. EXPERIMENTAL DESIGN: Nude mice, bearing xenografts of BxPC-3 or MiaPaCa-2 human pancreatic carcinoma cell lines, were injected twice weekly for 4 weeks with different doses of anti-EGFR (matuzumab) and anti-HER2 (trastuzumab) mAbs either alone or in combination. The effect of the two mAbs, on HER receptor phosphorylation, was also studied in vitro by Western blot analysis. RESULTS: The combined mAb treatment significantly inhibited tumor progression of the BxPC-3 xenografts compared with single mAb injection (P = 0.006) or no treatment (P = 0.0004) and specifically induced some complete remissions. The two mAbs had more antitumor effect than 4-fold greater doses of each mAb. The significant synergistic effect of the two mAbs was confirmed on the MiaPaCa-2 xenograft and on another type of carcinoma, SK-OV-3 ovarian carcinoma xenografts. In vitro, the cooperative effect of the two mAbs was associated with a decrease in EGFR and HER2 receptor phosphorylation. CONCLUSIONS: Anti-HER2 mAb has a synergistic therapeutic effect when combined with an anti-EGFR mAb on pancreatic carcinomas with low HER2 expression. These observations may open the way to the use of these two mAbs in a large panel of carcinomas expressing different levels of the two HER receptors.
Resumo:
Locally advanced prostate cancer (LAPC) is a heterogeneous entity usually embracing T3-4 and/or pelvic lymph-node-positive disease in the absence of established metastases. Outcomes for LAPC with single therapies have traditionally been poor, leading to the investigation of adjuvant therapies. Prostate cancer is a hormonally sensitive tumour, which usually responds to pharmacological manipulation of the androgen receptor or its testosterone-related ligands. As such, androgen deprivation therapy (ADT) has become an important adjuvant strategy for the treatment of LAPC, particularly for patients managed primarily with radiotherapy. Such results have generally not been replicated in surgical patients. With increased use of ADT has come improved awareness of the numerous toxicities associated with long-term use of these agents, as well as the development of strategies for minimizing ADT exposure and actively managing adverse effects. Several trials are exploring agents to enhance radiation cell sensitivity as well as the application of adjuvant docetaxel, an agent with proven efficacy in the metastatic, castrate-resistant setting. The recent work showing activity of cabazitaxel, sipuleucel-T and abiraterone for castrate-resistant disease in the post-docetaxel setting will see these agents investigated in conjunction with definitive surgery and radiotherapy.
Resumo:
The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.
Resumo:
Purpose of review Tyrosine kinase inhibitors (TKIs), such as imatinib and sunitinib, have changed the outcome of patients with gastrointestinal stromal tumor (GIST) and prolonged survival by many-fold. Unfortunately, treatment failure and tumor progression seem inevitable over time and constitute an unresolved clinical challenge. This article reviews current efforts to overcome drug resistance and progression. Recent findings The major mechanism of resistance toward imatinib and sunitinib is the development of secondary resistance mutations in the kinase domain of KIT. Recent efforts aim at inhibitors with increased activity against resistance mutations or a broader spectrum of activity. Other strategies include indirect KIT inhibition by modulating KIT chaperone proteins or inhibition of KIT-dependent and independent signaling pathways. Summary dThe rapid improvement of our understanding of GIST biology as well as resistance mechanisms towards imatinib and sunitinib will greatly facilitate the development of novel treatment strategies. This article summarizes the results of recently reported third and fourth-line clinical trials in patients with resistant GIST and reviews data of important proof-of-concept studies.
Resumo:
Although tumor-specific CD8 T-cell responses often develop in cancer patients, they rarely result in tumor eradication. We aimed at studying directly the functional efficacy of tumor-specific CD8 T cells at the site of immune attack. Tumor lesions in lymphoid and nonlymphoid tissues (metastatic lymph nodes and soft tissue/visceral metastases, respectively) were collected from stage III/IV melanoma patients and investigated for the presence and function of CD8 T cells specific for the tumor differentiation antigen Melan-A/MART-1. Comparative analysis was conducted with peripheral blood T cells. We provide evidence that in vivo-priming selects, within the available naive Melan-A/MART-1-specific CD8 T-cell repertoire, cells with high T-cell receptor avidity that can efficiently kill melanoma cells in vitro. In vivo, primed Melan-A/MART-1-specific CD8 T cells accumulate at high frequency in both lymphoid and nonlymphoid tumor lesions. Unexpectedly, however, whereas primed Melan-A/MART-1-specific CD8 T cells that circulate in the blood display robust inflammatory and cytotoxic functions, those that reside in tumor lesions (particularly in metastatic lymph nodes) are functionally tolerant. We show that both the lymph node and the tumor environments blunt T-cell effector functions and offer a rationale for the failure of tumor-specific responses to effectively counter tumor progression.
Resumo:
A low digit ratio (2D:4D) and low 2D:4D in the right compared with the left hand (right-left 2D:4D) are thought to be determined by high in utero concentrations of testosterone, and are related to "masculine" traits such as aggression and performance in sports like running and rugby. Low right-left 2D:4D is also related to sensitivity to testosterone as measured by the number of cytosine-adenine-guanine triplet repeats in exon 1 of the androgen receptor gene. Here we show that low right-left 2D:4D is associated with high maximal oxygen uptake (VO2(max)), high velocity at VO2(max), and high maximum lactate concentration in a sample of teenage boys. We suggest that low right-left 2D:4D is linked to performance in some sports because it is a proxy of high sensitivity to prenatal and maybe also circulating testosterone and high VO2(max).