3 resultados para An eddy-resolving ocean model simulation

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Advances in nebulizer design have produced both ultrasonic nebulizers and devices based on a vibrating mesh (vibrating mesh nebulizers), which are expected to enhance the efficiency of aerosol drug therapy. The aim of this study was to compare 4 different nebulizers, of 3 different types, in an in vitro model using albuterol delivery and physical characteristics as benchmarks. METHODS: The following nebulizers were tested: Sidestream Disposable jet nebulizer, Multisonic Infra Control ultrasonic nebulizer, and the Aerogen Pro and Aerogen Solo vibrating mesh nebulizers. Aerosol duration, temperature, and drug solution osmolality were measured during nebulization. Albuterol delivery was measured by a high-performance liquid chromatography system with fluorometric detection. The droplet size distribution was analyzed with a laser granulometer. RESULTS: The ultrasonic nebulizer was the fastest device based on the duration of nebulization; the jet nebulizer was the slowest. Solution temperature decreased during nebulization when the jet nebulizer and vibrating mesh nebulizers were used, but it increased with the ultrasonic nebulizer. Osmolality was stable during nebulization with the vibrating mesh nebulizers, but increased with the jet nebulizer and ultrasonic nebulizer, indicating solvent evaporation. Albuterol delivery was 1.6 and 2.3 times higher with the ultrasonic nebulizer and vibrating mesh nebulizers devices, respectively, than with the jet nebulizer. Particle size was significantly higher with the ultrasonic nebulizer. CONCLUSIONS: The in vitro model was effective for comparing nebulizer types, demonstrating important differences between nebulizer types. The new devices, both the ultrasonic nebulizers and vibrating mesh nebulizers, delivered more aerosolized drug than traditional jet nebulizers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptive dynamics shows that a continuous trait under frequency dependent selection may first converge to a singular point followed by spontaneous transition from a unimodal trait distribution into a bimodal one, which is called "evolutionary branching". Here, we study evolutionary branching in a deme-structured population by constructing a quantitative genetic model for the trait variance dynamics, which allows us to obtain an analytic condition for evolutionary branching. This is first shown to agree with previous conditions for branching expressed in terms of relatedness between interacting individuals within demes and obtained from mutant-resident systems. We then show this branching condition can be markedly simplified when the evolving trait affect fecundity and/or survival, as opposed to affecting population structure, which would occur in the case of the evolution of dispersal. As an application of our model, we evaluate the threshold migration rate below which evolutionary branching cannot occur in a pairwise interaction game. This agrees very well with the individual-based simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear whether targeting the NSC will impair NMDAR-dependent prosurvival and plasticity signaling. We show that the NMDAR can promote death signaling independently of the NR2 PDZ ligand, when expressed in non-neuronal cells lacking PSD-95 and neuronal nitric oxide synthase (nNOS), key PDZ proteins that mediate neuronal NMDAR excitotoxicity. However, in a non-neuronal context, the NMDAR promotes cell death solely via c-Jun N-terminal protein kinase (JNK), whereas NMDAR-dependent cortical neuronal death is promoted by both JNK and p38. NMDAR-dependent pro-death signaling via p38 relies on neuronal context, although death signaling by JNK, triggered by mitochondrial reactive oxygen species production, does not. NMDAR-dependent p38 activation in neurons is triggered by submembranous Ca(2+), and is disrupted by NOS inhibitors and also a peptide mimicking the NR2B PDZ ligand (TAT-NR2B9c). TAT-NR2B9c reduced excitotoxic neuronal death and p38-mediated ischemic damage, without impairing an NMDAR-dependent plasticity model or prosurvival signaling to CREB or Akt. TAT-NR2B9c did not inhibit JNK activation, and synergized with JNK inhibitors to ameliorate severe excitotoxic neuronal loss in vitro and ischemic cortical damage in vivo. Thus, NMDAR-activated signals comprise pro-death pathways with differing requirements for PDZ protein interactions. These signals are amenable to selective inhibition, while sparing synaptic plasticity and prosurvival signaling.