85 resultados para Amplitude modulation detectors
em Université de Lausanne, Switzerland
Resumo:
Direct electrical stimulation of the colon offers a promising approach for the induction of propulsive colonic contractions by using an implantable device. The objective of this study was to assess the feasibility to induce colonic contractions using a commercially available battery-operated stimulator (maximum pulse width of 1 ms and maximum amplitude of 10 V). Three pairs of pacing electrodes were inserted into the cecal seromuscular layer of anesthetized pigs. During a first set of in vivo experiments conducted on six animals, a pacing protocol leading to cecum contractions was determined: stimulation bursts with 1 ms pulse width, 10 V amplitude (7-15 mA), 120 Hz frequency, and 30-s burst duration, repeated every 2-5 min. In a second testing phase, an evaluation of the pacing protocol was performed in four animals (120 stimulation bursts in total). By using the battery-operated stimulator, contractions of the cecum and movement of contents could be induced in 92% of all stimulations. A cecal shortening of about 30% and an average intraluminal pressure increase of 10.0 +/- 6.0 mmHg were observed.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
The GABAergic system modulates respiratory activity and undergoes substantial changes during early life. Because this maturation process is sensitive to stress, we tested the hypothesis that gestational stress (GS) alters development of GABAergic modulation of respiratory control in rat pups. The respiratory responses to the selective GABAA receptor agonist muscimol were compared between pups born to dams subjected to GS (bright light and predator odor; 20 min/day from G9 to G19) or maintained under standard (control) conditions. Respiratory activity was measured on 1 and 4 days old pups of both sexes using in vivo (whole body plethysmography) and in vitro (isolated brainstem-spinal cord preparation) approaches. In intact pups, muscimol injection (0.75 mg/kg; i.p.) depressed minute ventilation; this response was less in GS pups, and at P4, muscimol augmented minute ventilation in GS females. Bath application of muscimol (0.01-0.5 μM) onto brainstem preparations decreased inspiratory (C4) burst frequency and amplitude in a dose-dependent manner; the responsiveness decreased with age. However, GS had limited effects on these results. We conclude that the results obtained in vivo are consistent with our hypothesis and show that GS delays maturation of GABAergic modulation of respiratory activity. The differences in the results observed between experimental approaches (in vivo versus in vitro) indicate that the effect of prenatal stress on maturation of GABAergic modulation of respiratory control mainly affects the peripheral/metabolic components of the respiratory control system.
β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling.
Resumo:
Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.
Resumo:
Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia.
Resumo:
Background and aim: Neuropathic pain (NP) is a frequent and disabling disorder occurring as a consequence of a direct lesion of the nervous system and recurrently associated with a positive shift toward nervous system excitability. Peripheral nerve activity is mainly carried by voltage-gated sodium channels (VGSC), with Nav1.7 isoform being an important candidate since loss of function mutations of its gene is associated with congenital inability to experience pain. Interestingly, ubiquitin ligases from the Nedd4 family are well known proteins that regulate the turnover of many membrane proteins such as VGSC and we showed Nedd2-2 is downregualted in experimental models of chronic pain. The aim of this study was to investigate the importance of Nedd4-2 in the modulation of Nav1.7 at the membrane. Methods: In vitro: whole cell patch clamp on HEK293 cell line stably expressing Nav1.7 was used to record sodium currents (INa), where the peak current of INa reflects the quantity of functional Nav1.7 expressed at the membrane. The possibility that Nedd4-2 modulates the currents was assessed by investigating the effect of its cotransfection on INa. Biotinylation of cell surface was used to isolate membrane-targeted Nav1.7. Furthermore, as the interaction between Nedd4-2 and Nav isoforms was previously reported to rely on an xPPxYx sequence (PY-motif), we mutated this latter to study its impact in the specific interaction between Nav1.7 and Nedd4-2. GST-fusion proteins composed of the Nav1.7 c terminal 66 amino acids (wild-type or PY mutated) and GST were used to pull-down Nedd4-2 from lysates. Results: Co-transfection of Nav1.7 with Nedd4-2 reduced the Nav1.7 current amplitude by ~80% (n = 36, p <0.001), without modifying the biophysical properties of INa. In addition, we show that the quantity of Nav1.7 at the membrane was decreased when Nedd4-2 was present. This effect was dependent on the PY-motif since mutations in this sequence abolished the down-regulatory effect of Nedd4-2. The importance of this motif was further confirmed by pull down experiments since the PY mutant completely eliminate the interaction with Nedd4-2. Perspectives: Altogether, these results point to the importance of Nedd4-2 as a Nav1.7 regulator through cell surface modulation of this sodium channel. Further experiments in freshly dissociated neurons from wild type and Scn1bflox/Nedd4-2Cre mice are needed to confirm in vivo these preliminary data.
Resumo:
Intercellular communication is achieved at specialized regions of the plasma membrane by¦gap junctions. Gap junctions are transmembrane channels allowing direct contacts between¦the cytoplasms of neighboring cells. Each cell participates with one hemichannel, or¦connexon, made of six protein subunits named connexins. Thanks to these junctions, cells¦potentially share a pool of small molecules and metabolites, such as nucleotides, amino acids¦and second messengers.¦In an ischemic (i.e. non-perfused) territory of the brain, irreversible damage progresses over¦time from the centre of the most severe flow reduction to the periphery with less disturbed¦perfusion. Functionally impaired tissue can survive and recover if sufficient reperfusion is reestablished¦within a limited time period, which depends on various factors and mechanisms¦modulating the signaling pathways leading to cell death.¦Observations were made indicating the presence of electrical coupling between neurons which¦resist better to an ischemic insult. This electrical coupling is likely to be mediated by¦Connexin36 (Cx36), a neuron specific connexin isoform. It was demonstrated in the past that¦global ischemia induces a selective upregulation of Cx36 expression in regions with neurons¦that survive the insult whereas others undergo apoptosis and die. These observations raise the¦possibility that the neuronal gap junction Cx36 might play a role in the destiny of neurons¦after cerebral ischemia.¦The aim of this work was to characterize the regulation of Connexin36 in a mouse model of¦transient focal cerebral ischemia by immunofluorescence and Western blot analysis. Our¦immunofluorescence results suggest a specific increase in Cx36 in the penumbral region of¦the ischemic hemisphere.
Resumo:
It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.
Resumo:
High fructose consumption is associated with obesity and characteristics of metabolic syndrome. This includes insulin resistance, dyslipidemia, type II diabetes and hepatic steatosis, the hepatic component of metabolic syndrome. Short term high fructose consumption in healthy humans is considered as a study model to increase intrahepatocellular lipids (IHCL). Protein supplementation added to a short term high fructose diet exerts a protective role on hepatic fat accumulation. Fructose disposal after an acute fructose load is well established. However, fructose disposal is usually studied when a high intake of fructose is ingested. Interaction of fructose with other macronutrients on fructose disposal is not clearly established. We wanted to assess how fructose disposal is modulated with nutritional factors. For the first study, we addressed the question of how would essential amino acid (EAA) supplemented to a high fructose diet have an impact on hepatic fat accumulation? We tried to distinguish which metabolic pathways were responsible for the increase in IHCL induced by high fructose intake and how those pathways would be modulated by EAA. After 6 days of hypercaloric high fructose diet, we observed, as expected an increase in IHCL modulated by an increase in VLDL-triglycerides and an increase in VLDL-13C-palmitate production. When adding a supplementation in EAA, we observed a decrease in IHCL but we could not define which mechanism was responsible for this process. With the second study, we were interested to observe fructose disposal after a test meal that contained lipid, protein and a physiologic dose of fructose co-ingested or not with glucose. When ingested with other macronutrients, hepatic fructose disposal is similar as when ingested as pure fructose. It induced oxidation, gluconeogenesis followed by glycogen synthesis, conversion into lactate and to a minor extent by de novo lipogenesis. When co- ingested with glucose decreased fructose oxidation as well as gluconeogenesis and an increased glycogen synthesis without affecting de novo lipogenesis or lactate. We were also able to observe induction of intestinal de novo lipogenesis with both fructose and fructose co- ingested with glucose. In summary, essential amino acids supplementation blunted increase in hepatic fat content induced by a short term chronic fructose overfeeding. However, EAA failed to improve other cardiovascular risk factors. Under isocaloric condition and in the frame of an acute test meal, physiologic dose of fructose associated with other macronutrients led to the same fructose disposal as when fructose is ingested alone. When co-ingested with glucose, we observed a decrease in fructose oxidation and gluconeogenesis as well as an increased in glycogen storage without affecting other metabolic pathways. - Une consommation élevée en fructose est associée à l'obésité et aux caractéristiques du syndrome métabolique. Ces dernières incluent une résistance à l'insuline, une dyslipidémie, un diabète de type II et la stéatose hépatique, composant hépatique du syndrome métabolique. À court terme une forte consommation en fructose chez l'homme sain est considérée comme un modèle d'étude pour augmenter la teneur en graisse hépatique. Une supplémentation en protéines ajoutée à une alimentation riche en fructose de courte durée a un effet protecteur sur l'accumulation des graisses au niveau du foie. Le métabolisme du fructose après une charge de fructose aiguë est bien établi. Toutefois, ce dernier est généralement étudié quand une consommation élevée de fructose est donnée. L'interaction du fructose avec d'autres macronutriments sur le métabolisme du fructose n'est pas connue. Nous voulions évaluer la modulation du métabolisme du fructose par des facteurs nutritionnels. Pour la première étude, nous avons abordé la question de savoir quel impact aurait une supplémentation en acides aminés essentiels (AEE) associé à une alimentation riche en fructose sur l'accumulation des graisses hépatiques. Nous avons essayé de distinguer les voies métaboliques responsables de l'augmentation des graisses hépatiques induite par l'alimentation riche en fructose et comment ces voies étaient modulées par les AEE. Après 6 jours d'une alimentation hypercalorique riche en fructose, nous avons observé, comme attendu, une augmentation des graisses hépatiques modulée par une augmentation des triglycérides-VLDL et une augmentation de la production de VLDL-13C-palmitate. Lors de la supplémentation en AEE, nous avons observé une diminution des graisses hépatiques mais les mécanismes responsables de ce processus n'ont pas pu être mis en évidence. Avec la seconde étude, nous nous sommes intéressés à observer le métabolisme du fructose après un repas test contenant des lipides, des protéines et une dose physiologique de fructose co-ingéré ou non avec du glucose. Lorsque le fructose était ingéré avec les autres macronutriments, le devenir hépatique du fructose était similaire à celui induit par du fructose pur. Il a induit une oxydation, suivie d'une néoglucogenèses, une synthèse de glycogène, une conversion en lactate et dans une moindre mesure une lipogenèse de novo. Lors de la co-ngestion avec du glucose, nous avons observé une diminution de l'oxydation du fructose et de la néoglucogenèse et une augmentation de la synthèse du glycogène, sans effet sur la lipogenèse de novo ni sur le lactate. Nous avons également pu mettre en évidence que le fructose et le fructose ingéré de façon conjointe avec du glucose ont induit une lipogenèse de novo au niveau de l'intestin. En résumé, la supplémentation en acides aminés essentiels a contrecarré l'augmentation de la teneur en graisse hépatique induite par une suralimentation en fructose sur le court terme. Cependant, la supplémentation en AEE a échoué à améliorer d'autres facteurs de risque cardiovasculaires. Dans la condition isocalorique et dans le cadre d'un repas test aiguë, la dose physiologique de fructose associée à d'autres macronutriments a conduit aux mêmes aboutissants du métabolisme du fructose que lorsque le fructose est ingéré seul. Lors de la co-ngestion avec le glucose, une diminution de l'oxydation du fructose est de la néoglucogenèse est observée en parallèle à une augmentation de la synthèse de glycogène sans affecter les autres voies métaboliques.
Resumo:
To examine the time course of alteration in neural process (spinal loop properties) during prolonged tennis playing, 12 competitive players performed a series of neuromuscular tests every 30 min during a 3-h match protocol. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Spinal reflexes and M-waves were evoked at rest (i.e., H(max) and M(max) , respectively) and during MVC (i.e., H(sup) , V-wave, M(sup) , respectively). MVC torque declined significantly (P<0.001) across the match protocol, due to decrease (P<0.001) in muscle activation and in normalized EMG activity. The impairment in MVC was significantly correlated (r=0.77; P<0.05) with the decline in muscle activation. H(max) /M(max) (P<0.001), H(sup) /M(sup) (P<0.01) and V/M(sup) (P<0.05) ratios were depressed with fatigue and decreased by ∼80%, 46% and 61% at the end of exercise, respectively. Simultaneously, peak twitch torque and M-wave amplitude were significantly (P<0.01) altered with exercise, suggesting peripheral alterations. During prolonged tennis playing, the compromised voluntary strength capacity is linked to a reduced neural input to the working muscles. This central activation deficit partly results from a modulation in spinal loop properties.
Resumo:
Exogenous oxidized cholesterol disturbs both lipid metabolism and immune functions. Therefore, it may perturb these modulations with ageing. Effects of the dietary protein type on oxidized cholesterol-induced modulations of age-related changes in lipid metabolism and immune function was examined using differently aged (4 weeks versus 8 months) male Sprague-Dawley rats when casein, soybean protein or milk whey protein isolate (WPI) was the dietary protein source, respectively. The rats were given one of the three proteins in diet containing 0.2% oxidized cholesterols mixture. Soybean protein, as compared with the other two proteins, significantly lowered both the serum thiobarbituric acid reactive substances value and cholesterol, whereas it elevated the ratio of high density lipoprotein-cholesterol/cholesterol in young rats, but not in adult. Moreover, soybean protein, but not casein and WPI, suppressed the elevation of Delta6 desaturation indices of phospholipids in both liver and spleen, particularly in young. On the other hand, WPI, compared to the other two proteins, inhibited the leukotriene B4 production of spleen, irrespective of age. Soybean protein reduced the ratio of CD4(+)/CD8(+) T-cells in splenic lymphocytes. Therefore, the levels of immunoglobulin (Ig)A, IgE and IgG in serum were lowered in rats given soybean protein in both age groups except for IgA in adult, although these observations were not shown in rats given other proteins. Thus, various perturbations of lipid metabolism and immune function caused by oxidized cholesterol were modified depending on the type of dietary protein. The moderation by soybean protein on the change of lipid metabolism seems to be susceptible in young rats whose homeostatic ability is immature. These observations may be exerted through both the promotion of oxidized cholesterol excretion to feces and the change of hormonal release, while WPI may suppress the disturbance of immune function by oxidized cholesterol in both ages. This alleviation may be associated with a large amount of lactoglobulin in WPI. These results thus showed a possibility that oxidized cholesterol-induced perturbations of age-related changes of lipid metabolism and immune function can be moderated by both the selection and combination of dietary protein.
Resumo:
Cellular metabolism is emerging as a potential fate determinant in cancer and stem cell biology, constituting a crucial regulator of the hematopoietic stem cell (HSC) pool [1-4]. The extremely low oxygen tension in the HSC microenvironment of the adult bone marrow forces HSCs into a low metabolic profile that is thought to enable their maintenance by protecting them from reactive oxygen species (ROS). Although HSC quiescence has for long been associated with low mitochondrial activity, as testified by the low rhodamine stain that marks primitive HSCs, we hypothesized that mitochondrial activation could be an HSC fate determinant in its own right. We thus set to investigate the implications of pharmacologically modulating mitochondrial activity during bone marrow transplantation, and have found that forcing mitochondrial activation in the post-transplant period dramatically increases survival. Specifically, we examined the mitochondrial content and activation profile of each murine hematopoietic stem and progenitor compartment. Long-term-HSCs (LT-HSC, Lin-cKit+Sca1+ (LKS) CD150+CD34-), short-term-HSCs (ST-HSC, LKS+150+34+), multipotent progenitors (MPPs, LKS+150-) and committed progenitors (PROG, Lin-cKit+Sca1-) display distinct mitochondrial profiles, with both mitochondrial content and activity increasing with differentiation. Indeed, we found that overall function of the hematopoietic progenitor and stem cell compartment can be resolved by mitochondrial activity alone, as illustrated by the fact that low mitochondrial activity LKS cells (TMRM low) can provide efficient long-term engraftment, while high mitochondrial activity LKS cells (TMRM high) cannot engraft in lethally irradiated mice. Moreover, low mitochondrial activity can equally predict efficiency of engraftment within the LT-HSC and ST-HSC compartments, opening the field to a novel method of discriminating a population of transitioning ST-HSCs that retain long-term engraftment capacity. Based on previous experience that a high-fat bone marrow microenvironment depletes short-term hematopoietic progenitors while conserving their long-term counterparts [5], we set to measure HSC mitochondrial activation in high-fat diet fed mice, known to decrease metabolic rate on a per cell basis through excess insulin/IGF-1 production. Congruently, we found lower mitochondrial activation as assessed by flow cytometry and RT-PCR analysis as well as a depletion of the short-term progenitor compartment in high fat versus control chow diet fed mice. We then tested the effects of a mitochondrial activator known to counteract the negative effects of high fat diet. We first analyzed the in vitro effect on HSC cell cycle kinetics, where no significant change in proliferation or division time was found. However, HSCs responded to the mitochondrial activator by increasing asynchrony, a behavior that is thought to directly correlate with asymmetric division [6]. As opposed to high-fat diet fed mice, mice fed with the mitochondrial activator showed an increase in ST-HSCs, while all the other hematopoietic compartments were comparable to mice fed on control diet. Given the dependency on short-term progenitors to rapidly reconstitute hematopoiesis following bone marrow transplantation, we tested the effect of pharmacological mitochondrial activation on the recovery of mice transplanted with a limiting HSC dose. Survival 3 weeks post-transplant was 80% in the treated group compared to 0% in the control group, as predicted by faster recovery of platelet and neutrophil counts. In conclusion, we have found that mitochondrial activation regulates the long-term to short-term HSC transition, unraveling mitochondrial modulation as a valuable drug target for post-transplant therapy. Identification of molecular pathways accountable for the metabolically mediated fate switch is currently ongoing.
Resumo:
The contribution of respiratory muscle work to the development of the O(2) consumption (Vo(2)) slow component is a point of controversy because it has been shown that the increased ventilation in hypoxia is not associated with a concomitant increase in Vo(2) slow component. The first purpose of this study was thus to test the hypothesis of a direct relationship between respiratory muscle work and Vo(2) slow component by manipulating inspiratory resistance. Because the conditions for a Vo(2) slow component specific to respiratory muscle can be reached during intense exercise, the second purpose was to determine whether respiratory muscles behave like limb muscles during heavy exercise. Ten trained subjects performed two 8-min constant-load heavy cycling exercises with and without a threshold valve in random order. Vo(2) was measured breath by breath by using a fast gas exchange analyzer, and the Vo(2) response was modeled after removal of the cardiodynamic phase by using two monoexponential functions. As anticipated, when total work was slightly increased with loaded inspiratory resistance, slight increases in base Vo(2), the primary phase amplitude, and peak Vo(2) were noted (14.2%, P < 0.01; 3.5%, P > 0.05; and 8.3%, P < 0.01, respectively). The bootstrap method revealed small coefficients of variation for the model parameter, including the slow-component amplitude and delay (15 and 19%, respectively), indicating an accurate determination for this critical parameter. The amplitude of the Vo(2) slow component displayed a 27% increase from 8.1 +/- 3.6 to 10.3 +/- 3.4 ml. min(-1). kg(-1) (P < 0.01) with the addition of inspiratory resistance. Taken together, this increase and the lack of any differences in minute volume and ventilatory parameters between the two experimental conditions suggest the occurrence of a Vo(2) slow component specific to the respiratory muscles in loaded condition.
Resumo:
Résumé : Emotion et cognition sont deux termes généralement employés pour désigner des processus psychiques de nature opposée. C'est ainsi que les sciences cognitives se sont longtemps efforcées d'écarter la composante «chaude »des processus «froids »qu'elles visaient, si ce n'est pour montrer l'effet dévastateur de la première sur les seconds. Pourtant, les processus cognitifs (de collecte, maintien et utilisation d'information) et émotioAnels (d'activation subjective, physiologique et comportementale face à ce qui est attractif ou aversif) sont indissociables. Par l'approche neuro-éthologique, à l'interface entre le substrat biologique et les manifestations comportementales, nous nous sommes intéressés à une fonction cognitive essentielle, la fonction mnésique, classiquement exprimée chez le rongeur par l'orientation spatiale. Au niveau du substrat, McDonald et White (1993) ont montré la dissociation de trois systèmes de mémoire, avec les rôles de l'hippocampe, du néostriatum et de l'amygdale dans l'encodage des informations respectivement épisodiques, procédurales et émotionnelles. Nous nous sommes penchés sur l'interaction entre ces systèmes en fonction de la dimension émotionnelle par l'éclairage du comportement. L'état émotionnel de l'animal dépend de plusieurs facteurs, que nous avons tenté de contrôler indirectement en comparant leurs effets sur l'acquisition, dans diverses conditions, de la tâche de Morris (qui nécessite la localisation dans un bassin de la position d'une plate-forme submergée), ainsi que sur le style d'exploration de diverses arènes, ouvertes ou fermées, plus ou moins structurées par la présence de tunnels en plexiglas transparent. Nous avons d'abord exploré le rôle d'un composant du système adrénergique dans le rapport à la difficulté et au stress, à l'aide de souris knock-out pour le récepteur à la noradrénaline a-1 B dans un protocole avec 1 ou 4 points de départ dans un bassin partitionné. Ensuite, nous nous sommes penchés, chez le rat, sur les effets de renforcement intermittent dans différentes conditions expérimentales. Dans ces conditions, nous avons également tenté d'analyser en quoi la situation du but dans un paysage donné pouvait interférer avec les effets de certaines formes de stress. Finalement, nous avons interrogé les conséquences de perturbations passées, y compris le renforcement partiel, sur l'organisation des déplacements sur sol sec. Nos résultats montrent la nécessité, pour les souris cont~ô/es dont l'orientation repose sur l'hippocampe, de pouvoir varier les trajectoires, ce qui favoriserait la constitution d'une carte cognitive. Les souris a->B KO s'avèrent plus sensibles au stress et capables de bénéficier de la condition de route qui permet des réponses simples et automatisées, sous-tendues par l'activité du striatum. Chez les rats en bassin 100% renforcé, l'orientation apparaît basée sur l'hippocampe, relayée par le striatum pour le développement d'approches systématiques et rapides, avec réorientation efficace en nouvelle position par réactivation dépendant de l'hippocampe. A 50% de renforcement, on observe un effet du type de déroulement des sessions, transitoirement atténué par la motivation Lorsque les essais s'enchaînent sans pause intrasession, les latences diminuent régulièrement, ce qui suggère une prise en charge possible par des routines S-R dépendant du striatum. L'organisation des mouvements exploratoires apparaît dépendante du niveau d'insécurité, avec différents profils intermédiaires entre la différentiation maximale et la thigmotaxie, qui peuvent être mis en relation avec différents niveaux d'efficacité de l'hippocampe. Ainsi, notre travail encourage à la prise en compte de la dimension émotionnelle comme modulatrice du traitement d'information, tant en phase d'exploration de l'environnement que d'exploitation des connaissances spatiales. Abstract : Emotion and cognition are terms widely used to refer to opposite mental processes. Hence, cognitive science research has for a long time pushed "hot" components away from "cool" targeted processes, except for assessing devastating effects of the former upon the latter. However, cognitive processes (of information collection, preservation, and utilization) and emotional processes (of subjective, physiological, and behavioral activation roue to attraction or aversion) are inseparable. At the crossing between biological substrate and behavioral expression, we studied a chief cognitive function, memory, classically shown in animals through spatial orientation. At the substrate level, McDonald et White (1993) have shown a dissociation between three memory systems, with the hippocampus, neostriatum, and amygdala, encoding respectively episodic, habit, and emotional information. Through the behavior of laboratory rodents, we targeted the interaction between those systems and the emotional axis. The emotional state of an animal depends on different factors, that we tried to check in a roundabout way by the comparison of their effects on acquisition, in a variety of conditions, of the Morris task (in which the location of a hidden platform in a pool is required), as well as on the exploration profile in different apparatus, open-field and closed mazes, more or less organized by clear Plexiglas tunnels. We first tracked the role, under more or less difficult and stressful conditions, of an adrenergic component, with knock-out mice for the a-1 B receptor in a partitioned water maze with 1 or 4 start positions. With rats, we looked for the consequences of partial reinforcement in the water maze in different experimental conditions. In those conditions, we further analyzed how the situation of the goal in the landscape could interfere with the effect of a given stress. At last, we conducted experiments on solid ground, in an open-field and in radial mazes, in order to analyze the organization of spatial behavior following an aversive life event, such as partial reinforcement training in the water maze. Our results emphasize the reliance of normal mice to be able to vary approach trajectories. One of our leading hypotheses is that such strategies are hippocampus-dependent and are best developed for of a "cognitive map like" representation. Alpha-1 B KO mice appear more sensitive to stress and able to take advantage of the route condition allowing simple and automated responses, most likely striatum based. With rats in 100% reinforced water maze, the orientation strategy is predominantly hippocampus dependent (as illustrated by the impairment induced by lesions of this structure) and becomes progressively striatum dependent for the development of systematic and fast successful approaches. Training towards a new platform position requires a hippocampus based strategy. With a 50% reinforcement rate, we found a clear impairment related to intersession disruption, an effect transitorily minimized by motivation enhancement (cold water). When trials are given without intrasession interruption, latencies consistently diminish, suggesting a possibility for striatum dependent stimulus-response routine to occur. The organization of exploratory movements is shown to depend on the level of subjective security, with different intermediary profiles between maximum differentiation and thigmotaxy, which can be considered in parallel with different efficiency levels of the hippocampus dependent strategies. Thus, our work fosters the consideration of emotion as a cognitive treatment modulator, during spatial exploration as well as spatial learning. It leads to a model in which the predominance of hippocampus based exploration is challenged by training conditions of various nature.
Resumo:
A solution of (18)F was standardised with a 4pibeta-4pigamma coincidence counting system in which the beta detector is a one-inch diameter cylindrical UPS89 plastic scintillator, positioned at the bottom of a well-type 5''x5'' NaI(Tl) gamma-ray detector. Almost full detection efficiency-which was varied downwards electronically-was achieved in the beta-channel. Aliquots of this (18)F solution were also measured using 4pigamma NaI(Tl) integral counting and Monte Carlo calculated efficiencies as well as the CIEMAT-NIST method. Secondary measurements of the same solution were also performed with an IG11 ionisation chamber whose equivalent activity is traceable to the Système International de Référence through the contribution IRA-METAS made to it in 2001; IRA's degree of equivalence was found to be close to the key comparison reference value (KCRV). The (18)F activity predicted by this coincidence system agrees closely with the ionisation chamber measurement and is compatible within one standard deviation of the other primary measurements. This work demonstrates that our new coincidence system can standardise short-lived radionuclides used in nuclear medicine.