4 resultados para Amount h-b CH4

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to important alteration caused by long time decomposition, the gases in human bodies buried for more than a year have not been investigated. For the first time, the results of gas analysis sampled from bodies recently exhumed after 30 years are presented. Adipocere formation has prevented the bodies from too important alteration, and gaseous areas were identified. The sampling was performed with airtight syringes assisted by multi-detector computed tomography (MDCT) in those specific areas. The important amount of methane (CH4), coupled to weak amounts of hydrogen (H2) and carbon dioxide (CO2), usual gaseous alteration indicators, have permitted to confirm methanogenesis mechanism for long period of alteration. H2 and CO2 produced during the first stages of the alteration process were consumed through anaerobic oxidation by methanogenic bacteria, generating CH4.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the aim of understanding the mechanisms that control the metamorphic transition from the CH4- to the H2O-(CO2)-dominated fluid zone in the Helvetic domain of the Central Alps of Switzerland, fluid inclusions in quartz, illite ``crystallinity'' index, vitrinite reflectance, and the stable isotope compositions of vein and whole rock minerals and fluids trapped in quartz were investigated along four cross-sections. Increasing temperature during prograde metamorphism led to the formation of dry gas by hydrocarbon cracking in the CH4-zone. Fluid immiscibility in the H2O-CH4-(CO2)-NaCl system resulted in cogenetic, CH4- and H2O-dominated fluid inclusions. In the CH4-zone, fluids were trapped at temperatures <= 270 +/- 5 degrees C. The end of the CH4-zone is markedby a sudden increase of CO2 content in the gas phase of fluid inclusions. At temperatures > 270 +/- 5 degrees C, in the H2O-zone, the total amount of volatiles within the fluid decreased below 1 mol% with no immiscibility. This resulted m total homogenization temperatures of H2O-(CO2-CH4)-NaCl inclusions below 180 degrees C. Hydrogen isotope compositions of methane in fluid inclusion have delta D values of less than -100 parts per thousand in the CH4-zone, typical for an origin through cracking of higher hydrocarbons, but where the methane has not equilibrated with the pore water. delta D values of fluid inclusion water are around -40 parts per thousand., in isotopic equilibrium with phyllosilicates of the whole rocks. Within the CH4 to H2O(CO2) transition zone, delta D(H2O) values in fluid inclusions decrease to -130 parts per thousand interpreted to reflect the contribution of deuterium depleted water from methane oxidation. In the H2O-zone, delta D(H2O) values increase again towards an average of -30 parts per thousand which is again consistent with isotopic equilibrium with host-rock phyllosilicates. delta C-13 values of methane in fluid inclusions from the CH4-zone are around -27 parts per thousand in isotopic equilibrium with calcite in veins and whole rocks. The delta C-13(CH4) values decrease to less than -35 parts per thousand at the transition to the H2O-zone and are no longer in equilibrium with the carbonates in the whole rocks. delta C-13 values of CO, are variable but too low to be in equilibrium with the wall rock fluids, compatible with a contribution of CO2 from closed system oxidation of methane. Differences in isotopic composition between host-rock and Alpine fissure carbonate are generally small, suggesting that the amount of CO2 produced by oxidation of methane was small compared to the C-budget in the rocks and local pore fluids were buffered by the wall rocks during precipitation of calcite within the fissures. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although recent hydrothermal experiments imply that abiogenic methane (CH4) generation from hydrothermal reduction of CO2 can occur, evidence from natural systems was still lacking. Based on the chemical and isotopic equilibrium signatures of low-temperature fumarolic gas discharges, we are able to provide hard evidence for its natural occurrence, namely in three subduction-related bi-phase hydrothermal systems of the Mediterranean, whose temperatures range from 260 to 470 degrees C. The attainment of equilibrium and the time spans of recent volcanic dormancy allowed us to calculate minimum rates for chemical and isotopic equilibration. These are significantly higher than those previously reported and might be due to the presence of a saturated water vapor phase in the investigated systems. The fact that nature provides conditions enabling relatively fast production of hydrocarbons from CO2 strongly supports the concerns that were recently raised from laboratory experiments. These address the use of the carbon isotope composition of reduced carbon in Archean sediments as a tracer of early life and the occurrence of CH4 on extraterrestrial planets as a bioindicator. In view of the potential role of abiogenic CH4 as a precursor of life, we also present an estimate of abiogenic hydrothermal CH4 fluxes throughout the Archean. It is not expected that these fluxes exceeded 80 Mt/yr during the past 4.0 Ga. This, however, would have been enough to facilitate HCN production on the prebiotic Earth. (C) 2007 Elsevier Ltd. All rights reserved.