6 resultados para Amino acid specificity

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Hyperzincemia and hypercalprotectinemia (Hz/Hc) is a distinct autoinflammatory entity involving extremely high serum concentrations of the proinflammatory alarmin myeloid-related protein (MRP) 8/14 (S100A8/S100A9 and calprotectin). OBJECTIVE: We sought to characterize the genetic cause and clinical spectrum of Hz/Hc. METHODS: Proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gene sequencing was performed in 14 patients with Hz/Hc, and their clinical phenotype was compared with that of 11 patients with pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. PSTPIP1-pyrin interactions were analyzed by means of immunoprecipitation and Western blotting. A structural model of the PSTPIP1 dimer was generated. Cytokine profiles were analyzed by using the multiplex immunoassay, and MRP8/14 serum concentrations were analyzed by using an ELISA. RESULTS: Thirteen patients were heterozygous for a missense mutation in the PSTPIP1 gene, resulting in a p.E250K mutation, and 1 carried a mutation resulting in p.E257K. Both mutations substantially alter the electrostatic potential of the PSTPIP1 dimer model in a region critical for protein-protein interaction. Patients with Hz/Hc have extremely high MRP8/14 concentrations (2045 ± 1300 μg/mL) compared with those with PAPA syndrome (116 ± 74 μg/mL) and have a distinct clinical phenotype. A specific cytokine profile is associated with Hz/Hc. Hz/Hc mutations altered protein binding of PSTPIP1, increasing interaction with pyrin through phosphorylation of PSTPIP1. CONCLUSION: Mutations resulting in charge reversal in the y-domain of PSTPIP1 (E→K) and increased interaction with pyrin cause a distinct autoinflammatory disorder defined by clinical and biochemical features not found in patients with PAPA syndrome, indicating a unique genotype-phenotype correlation for mutations in the PSTPIP1 gene. This is the first inborn autoinflammatory syndrome in which inflammation is driven by uncontrolled release of members of the alarmin family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retroviruses are both powerful evolutionary forces and dangerous threats to genome integrity. As such, they have imposed strong selective pressure on their hosts, notably triggering the emergence of restriction factors, such as TRIM5 alpha, that act as potent barriers to their cross-species transmission. TRIM5 alpha orthologues from different primates have distinct retroviral restriction patterns, largely dictated by the sequence of their C-terminal PRYSPRY domain, which binds the capsid protein of incoming virions. Here, by combining genetic and functional analyses of human and squirrel monkey TRIM5 alpha, we demonstrate that the coiled-coil domain of this protein, thus far essentially known for mediating oligomerization, also conditions the spectrum of antiretroviral activity. Furthermore, we identify three coiled-coil residues responsible for this effect, one of which has been under positive selection during primate evolution, notably in New World monkeys. These results indicate that the PRYSPRY and coiled-coil domains cooperate to determine the specificity of TRIM5 alpha-mediated capture of retroviral capsids, shedding new light on this complex event.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amino acids have been reported to increase endogenous glucose production in normal human subjects during hyperinsulinemia: however, controversy exists as to whether insulin-mediated glucose disposal is inhibited under these conditions. The effect of an amino acid infusion on glucose oxidation rate has so far not been determined. Substrate oxidation rates, endogenous glucose production, and [13C]glucose synthesis from [13C]bicarbonate were measured in six normal human subjects during sequential infusions of exogenous glucose and exogenous glucose with (n = 5) or without (n = 5) exogenous amino acids. Amino acids increased endogenous glucose production by 84% and [13C]glucose synthesis by 235%. Glucose oxidation estimated from indirect calorimetry decreased slightly after amino acids, but glucose oxidation estimated from [13C]glucose-13CO2 data was increased by 14%. It is concluded that gluconeogenesis is the major pathway of amino acid degradation. During amino acid administration, indirect calorimetry underestimates the true rate of glucose oxidation, whereas glucose oxidation calculated from the 13C enrichment of expired CO2 during [U-13C]glucose infusion does not. A slight stimulation of glucose oxidation during amino acid infusion, concomitant with an increased plasma insulin concentration, indicates that amino acids do not inhibit glucose oxidation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumour necrosis factor receptor superfamily (TNFRSF) and all primary viral strains tested to date use CD134 for infection. To investigate the effect of the natural ligand for CD134 on FIV infection, feline CD134L was cloned and expressed in soluble forms. However, in contrast to murine or human CD134L, soluble feline CD134L (sCD134L) did not bind to CD134. Receptor-binding activity was restored by enforced covalent trimerisation following the introduction of a synthetic trimerisation domain from tenascin (TNC). Feline and human TNC-CD134Ls retained the species-specificity of the membrane-bound forms of the ligand while murine TNC-CD134L displayed promiscuous binding to feline, human or murine CD134. Feline and murine TNC-CD134Ls were antagonists of FIV infection; however, potency was both strain-specific and substrate-dependent, indicating that the modulatory effects of endogenous sCD134L, or exogenous CD134Lbased therapeutics, may vary depending on the viral strain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.