75 resultados para Ambient-temperature

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures. Here we show that, in addition to PIF4, PIF3 and PIF5, but not PIF1 and PIF6, can promote flowering when expressed specifically in phloem companion cells (PCC), where they can induce FT and its close paralog, TSF. However, despite their strong potential to promote flowering, genetic analyses suggest that the PIF genes seem to have only a minor role in adjusting flowering in response to photoperiod or high ambient temperature. In addition, loss of PIF function only partially suppressed the early flowering phenotype and FT expression of the arp6 mutant, which is defective in H2A.Z deposition. In contrast, the chemical inhibition of gibberellic acid (GA) biosynthesis resulted in a strong attenuation of early flowering and FT expression in arp6. Furthermore, GA was able to induce flowering at low temperature (15°C) independently of FT, TSF, and the PIF genes, probably directly at the shoot apical meristem. Together, our results suggest that the timing of the floral transition in response to ambient temperature is more complex than previously thought and that GA signaling might play a crucial role in this process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The remarkable plasticity of their architecture allows plants to adjust growth to the environment and to overcome adverse conditions. Two examples of environmental stresses that drastically affect shoot development are imminent shade and high temperature. Plants in crowded environments and plants in elevated ambient temperature display very similar phenotypic adaptations of elongated hypocotyls in seedlings and elevated and elongated leaves at later developmental stages. The comparable growth responses to shade and high temperature are partly regulated through shared signaling pathways, of which the phytohormone auxin and the phytochrome interacting factors (PIFs) are important components. During both shade- and temperature-induced elongation growth auxin biosynthesis and signaling are upregulated in a PIF-dependent manner. In this review we will discuss recent progress in our understanding of how auxin mediates architectural adaptations to shade and high temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deep-sea sponge Monorhaphis chuni forms giant basal spicules, which can reach lengths of 3 m; they represent the largest biogenic silica structures on Earth that is formed from an individual metazoan. The spicules offer a unique opportunity to record environmental change of past oceanic and climatic conditions. A giant spicule collected in the East China Sea in a depth of 1110 m was investigated. The oxygen isotopic composition and Mg/Ca ratios determined along center-to-surface segments are used as geochemical proxies for the assessment of seawater paleotemperatures. Calculations are based on the assumption that the calculated temperature near the surface of the spicule is identical with the average ambient temperature of 4 degrees C. A seawater temperature of 1.9 degrees C is inferred for the beginning of the lifespan of the Monorhaphis specimen. The temperature increases smoothly to 2.3 degrees C, to be followed by sharply increased and variable temperatures up to 6-10 degrees C. In the outer part of the spicule, the inferred seawater temperature is about 4 degrees C. The lifespan of the spicule can be estimated to 11,000 +/- 3000 years using the long-term trend of the inferred temperatures fitted to the seawater temperature age relationships since the Last Glacial Maximum. Specimens of Monorhaphis therefore represents one the oldest living animals on Earth. The remarkable temperature spikes of the ambient seawater occurring 9500-3100 years B.P. are explained by discharges of hydrothermal fluids in the neighborhood of the spicule. The irregular lamellar organization of the spicule and the elevated Mn concentrations during the high-temperature growth are consistent with a hydrothermal fluid input. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested the hypothesis that elevation in heart rate (HR) during submaximal exercise in the heat is related, in part, to increased percentage of maximal O(2) uptake (%Vo(2 max)) utilized due to reduced maximal O(2) uptake (Vo(2 max)) measured after exercise under the same thermal conditions. Peak O(2) uptake (Vo(2 peak)), O(2) uptake, and HR during submaximal exercise were measured in 22 male and female runners under four environmental conditions designed to manipulate HR during submaximal exercise and Vo(2 peak). The conditions involved walking for 20 min at approximately 33% of control Vo(2 max) in 25, 35, 40, and 45 degrees C followed immediately by measurement of Vo(2 peak) in the same thermal environment. Vo(2 peak) decreased progressively (3.77 +/- 0.19, 3.61 +/- 0.18, 3.44 +/- 0.17, and 3.13 +/- 0.16 l/min) and HR at the end of the submaximal exercise increased progressively (107 +/- 2, 112 +/- 2, 120 +/- 2, and 137 +/- 2 beats/min) with increasing ambient temperature (T(a)). HR and %Vo(2 peak) increased in an identical fashion with increasing T(a). We conclude that elevation in HR during submaximal exercise in the heat is related, in part, to the increase in %Vo(2 peak) utilized, which is caused by reduced Vo(2 peak) measured during exercise in the heat. At high T(a), the dissociation of HR from %Vo(2 peak) measured after sustained submaximal exercise is less than if Vo(2 max) is assumed to be unchanged during exercise in the heat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a direct binding assay based on photoaffinity labeling, we have studied the interaction of antigenic peptides with murine MHC class I molecules on living cells. Photoreactive derivatives were prepared by N-terminal amidation with iodo, 4-azido salicylic acid of the Kd restricted Plasmodium berghei circumsporozoite (P.b. CS) peptide 253-260 (YIPSAEKI) and the Db-restricted Adenovirus 5 early region 1A (Ad5 E1A) peptide 234-243 (SGPSNTPPEI). As assessed in functional competition experiments, both peptide derivatives retained the specific binding activity of the parental peptides for Kd or Dd, respectively. The P.b. CS photoprobe specifically labeled Kd molecules on P815 (H-2d) cells, but failed to label RMA (H-2b) cells. Conversely, the Ad5 E1A photoprobe specifically labeled Db molecules on RMA cells, but failed to label P815 cells. When the two photoprobes were tested on a panel of Con A-activated spleen cells expressing 10 different H-2 haplotypes, significant photoaffinity labeling was observed only on H-2d cells with the P.b. CS photoprobe and on H-2b cells with the Ad5 E1A photoprobe. Labeling of cell-associated Kd or Db molecules with the photoprobes was specifically inhibited by antigenic peptides known to be presented by the same class I molecule. Photoaffinity labeling of Kd with the P.b. CS photoprobe was used to study the dynamics of peptide binding on living P815 cells. Binding increased steadily with the incubation period (up to 8 h) at 37 degrees C and at ambient temperature, but was greatly reduced (greater than 95%) at 0 to 4 degrees C or in the presence of ATP synthesis inhibitors. The magnitude of the labeling was twofold higher at room temperature than at 37 degrees C. In contrast, binding to isolated Kd molecules in solution rapidly reached maximal binding, particularly at 37 degrees C. Dissociation of the photoprobe from either cell-associated or soluble Kd molecules was similar, with a half time of approximately 1 h at 37 degrees C, whereas the complexes were long-lived at 4 degrees C in both instances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal energetics of rodents from cool, wet tropical highlands are poorly known. Metabolic rate, body temperature and thermal conductance were measured in the moss-forest rat, Rattus niobe (Rodentia), a small murid endemic to the highlands of New Guinea. These data were evaluated in the context of the variation observed in the genus Rattus and among tropical murids. In 7 adult R. niobe, basal metabolic rate (BMR) averaged 53.6±6.6mLO2h(-1), or 103% of the value predicted for a body mass of 42.3±5.8g. Compared to other species of Rattus, R. niobe combines a low body temperature (35.5±0.6°C) and a moderately low minimal wet thermal conductance cmin (5.88±0.7mLO2h(-1)°C(-1), 95% of predicted) with a small size, all of which lead to reduced energy expenditure in a constantly cool environment. The correlations of mean annual rainfall and temperature, altitude and body mass with BMR, body temperature and cmin were analyzed comparatively among tropical Muridae. Neither BMR, nor cmin or body temperature correlated with ambient temperature or altitude. Some of the factors which promote high BMR in higher latitude habitats, such as seasonal exposure to very low temperature and short reproductive season, are lacking in wet montane tropical forests. BMR increased with rainfall, confirming a pattern observed among other assemblages of mammals. This correlation was due to the low BMR of several desert adapted murids, while R. niobe and other species from wet habitats had a moderate BMR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although body colouration is often used in social interactions, few studies have tested whether colouration is linked to a suite of behavioural traits. In the present study, we examined whether among captive adult male Eastern Hermann's tortoises (Eurotestudo boettgeri) behavioural patterns covary with eumelanic colouration of the shell. Dark eumelanic males were more aggressive in male-male confrontations and bolder towards humans. These relationships were independent of body size and ambient temperature. Activity level and exploration were not significantly associated with colouration. We conclude that at least in captivity shell colouration predicts agonistic behaviour towards conspecifics and fearfulness towards human (i.e. boldness).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studying the geographic variation of phenotypic traits can provide key information about the potential adaptive function of alternative phenotypes. Gloger's rule posits that animals should be dark-vs. light-colored in warm and humid vs. cold and dry habitats, respectively. The rule is based on the assumption that melanin pigments and/or dark coloration confer selective advantages in warm and humid regions. This rule may not apply, however, if genes for color are acting on other traits conferring fitness benefits in specific climes. Covariation between coloration and climate will therefore depend on the relative importance of coloration or melanin pigments and the genetically correlated physiological and behavioral processes that enable an animal to deal with climatic factors. The Barn Owl (Tyto alba) displays three melanin-based plumage traits, and we tested whether geographic variation in these traits at the scale of the North American continent supported Gloger's rule. An analysis of variation of pheomelanin-based reddish coloration and of the number and size of black feather spots in 1,369 museum skin specimens showed that geographic variation was correlated with ambient temperature and precipitation. Owls were darker red in color and displayed larger but fewer black feather spots in colder regions. Owls also exhibited more and larger black spots in regions where the climate was dry in winter. We propose that the associations between pigmentation and ambient temperature are of opposite sign for reddish coloration and spot size vs. the number of spots because selection exerted by climate (or a correlated variable) is plumage trait-specific or because plumage traits are genetically correlated with different adaptations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacteria are generally difficult specimens to prepare for conventional resin section electron microscopy and mycobacteria, with their thick and complex cell envelope layers being especially prone to artefacts. Here we made a systematic comparison of different methods for preparing Mycobacterium smegmatis for thin section electron microscopy analysis. These methods were: (1) conventional preparation by fixatives and epoxy resins at ambient temperature. (2) Tokuyasu cryo-section of chemically fixed bacteria. (3) rapid freezing followed by freeze substitution and embedding in epoxy resin at room temperature or (4) combined with Lowicryl HM20 embedding and ultraviolet (UV) polymerization at low temperature and (5) CEMOVIS, or cryo electron microscopy of vitreous sections. The best preservation of bacteria was obtained with the cryo electron microscopy of vitreous sections method, as expected, especially with respect to the preservation of the cell envelope and lipid bodies. By comparison with cryo electron microscopy of vitreous sections both the conventional and Tokuyasu methods produced different, undesirable artefacts. The two different types of freeze-substitution protocols showed variable preservation of the cell envelope but gave acceptable preservation of the cytoplasm, but not lipid bodies, and bacterial DNA. In conclusion although cryo electron microscopy of vitreous sections must be considered the 'gold standard' among sectioning methods for electron microscopy, because it avoids solvents and stains, the use of optimally prepared freeze substitution also offers some advantages for ultrastructural analysis of bacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the factors that drive geographic variation in life history is an important challenge in evolutionary ecology. Here, we analyze what predicts geographic variation in life-history traits of the common lizard, Zootoca vivipara, which has the globally largest distribution range of all terrestrial reptile species. Variation in body size was predicted by differences in the length of activity season, while we found no effects of environmental temperature per se. Females experiencing relatively short activity season mature at a larger size and remain larger on average than females in populations with relatively long activity seasons. Interpopulation variation in fecundity was largely explained by mean body size of females and reproductive mode, with viviparous populations having larger clutch size than oviparous populations. Finally, body size-fecundity relationship differs between viviparous and oviparous populations, with relatively lower reproductive investment for a given body size in oviparous populations. While the phylogenetic signal was weak overall, the patterns of variation showed spatial effects, perhaps reflecting genetic divergence or geographic variation in additional biotic and abiotic factors. Our findings emphasize that time constraints imposed by the environment rather than ambient temperature play a major role in shaping life histories in the common lizard. This might be attributed to the fact that lizards can attain their preferred body temperature via behavioral thermoregulation across different thermal environments. Length of activity season, defining the maximum time available for lizards to maintain optimal performance, is thus the main environmental factor constraining growth rate and annual rates of mortality. Our results suggest that this factor may partly explain variation in the extent to which different taxa follow ecogeographic rules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.