55 resultados para Alkalic igneous rocks
em Université de Lausanne, Switzerland
Resumo:
Li contents [Li] and isotopic composition (delta Li-7) of mafic minerals (mainly amphibole and clinopyroxene) from the alkaline to peralkaline Ilimaussaq plutonic complex, South Greenland, track the behavior of Li and its isotopes during magmatic differentiation and final cooling of an alkaline igneous system. [Li] in amphibole increase from < 10 ppm in Caamphiboles of the least differentiated unit to >3000 ppm in Na-amphiboles of the highly evolved units. In contrast, [Li] in clinopyroxene are comparatively low (<85 ppm) and do not vary systematically with differentiation. The distribution of Li between amphibole and pyroxene is controlled by the major element composition of the minerals (Ca-rich and Na-rich, respectively) and changes in oxygen fugacity (due to Li incorporation via coupled substitution with ferric iron) during magmatic differentiation. delta(7) Li values of all minerals span a wide range from + 17 to - 8 parts per thousand, with the different intrusive units of the complex having distinct Li isotopic systematics. Amphiboles, which dominate the Li budget of whole-rocks from the inner part of the complex, have constant delta Li-7 of + 1.8 +/- 2.2 parts per thousand (2 sigma, n = 15). This value reflects a homogeneous melt reservoir and is consistent with their mantle derivation, in agreement with published O and Nd isotopic data. Clinopyroxenes of these samples are consistently lighter, with Delta Li-7(amph-cpx). as large as 8 parts per thousand and are thus not in Li isotope equilibrium. These low values probably reflect late-stage diffusion of Li into clinopyroxene during final cooling of the rocks, thus enriching the clinopyroxene in 6 Li. At the margin of the complex delta(7) Li in the syenites increases systematically, from +2 to high values of + 14 parts per thousand. This, coupled with the observed Li isotope systematics of the granitic country rocks, reflects post-magmatic open-system processes occurring during final cooling of the intrusion. Although the shape and magnitude of the Li isotope and elemental profiles through syenite and country rock are suggestive of diffusion-driven isotope fractionation, they cannot be modeled by one-dimensional diffusive transport and point to circulation of a fluid having a high 67 Li value (possibly seawater) along the chilled contact. In all, this study demonstrates that Li isotopes can be used to identify complex fluid- and diffusion-governed processes taking place during the final cooling of such rocks. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Low pressure partial melting of basanitic and ankaramitic dykes gave rise to unusual, zebra-like migmatites, in the contact aureole of a layered pyroxenite-gabbro intrusion, in the root zone of an ocean island (Basal Complex, Fuerteventura, Canary Islands). These migmatites are characterised by a dense network of closely spaced, millimetre-wide leucocratic segregations. Their mineralogy consists of plagioclase (An(32-36)), diopside, biotite, oxides (magnetite, ilmenite), +/-amphibole, dominated by plagioclase in the leucosome and diopside in the melanosome. The melanosome is almost completely recrystallised, with the preservation of large, relict igneous diopside phenocrysts in dyke centres. Comparison of whole-rock and mineral major- and trace-element data allowed us to assess the redistribution of elements between different mineral phases and generations during contact metamorphism and partial melting. Dykes within and outside the thermal aureole behaved like closed chemical systems. Nevertheless, Zr, Hf, Y and REEs were internally redistributed, as deduced by comparing the trace element contents of the various diopside generations. Neocrystallised diopside - in the melanosome, leucosome and as epitaxial phenocryst rims - from the migmatite zone, are all enriched in Zr, Hf, Y and REEs compared to relict phenocrysts. This has been assigned to the liberation of trace elements on the breakdown of enriched primary minerals, kaersutite and sphene, on entering the thermal aureole. Major and trace element compositions of minerals in migmatite melanosomes and leucosomes are almost identical, pointing to a syn- or post-solidus reequilibration on the cooling of the migmatite terrain i.e. mineral-melt equilibria were reset to mineral-mineral equilibria. (C) 2007 Elsevier B.V. All rights reserved.
Hydrogen isotope fractionations between amphiboles, micas, and fluids in alkaline igneous intrusions
Resumo:
RÉSUMÉ DE LA THÈSE Les teneurs des amphiboles en éléments majeurs et en isotopes stables ont été analysées dans plusieurs complexes ignés alcalins et hyperalcalins, dans le but de déterminer l'importance des variations de composition des minéraux pour le fractionnement isotopique de l'hydrogène dans un système naturel minéral-magma-fluide. Cette étude se concentre principalement sur les syénites néphéliniques de complexes intrusifs alcalins bien connus mais à chimie variable, dont les amphiboles, ainsi que d'autres silicates hydratés tels que micas et eudialytes, lorsque cela était possible, ont été séparés. L'intérêt principal s'est porté sur le complexe alcalin d'Ilímaussaq de la Province du Gardar, au Sud du Groenland. Dans une optique de comparaison, nous avons collecté et analysé d'autres échantillons provenant du complexe de Tugtutôq (Sud Groenland), des complexes de Khibina et Lovozero (Péninsule de Kola, Russie), du Mont St-Hilaire et du Mont Royal (Canada) et de 6 autres du nord-ouest de la Namibie (Cape Cross, Okenyenya, Messum, Etaneno, Kalkfeld,et Okorusu). Les compositions isotopiques de l'hydrogène des amphiboles des ces différentes zones présentent de grandes variations (-227 à -700/00), ce qui est atypique pour des magmas d'origine mantellique. Les valeurs comprises entre -80 et -400/00 indiquent une provenance du manteau. Ces larges variations de compositions ainsi que l'extrême appauvrissement en isotope lourd de l'hydrogène (D), en comparaison avec d'autres roches ignées, semblent être propres.aux roches alcalines et hyperalcalines de ce type, ce qui indiquerait un processus commun. Les différents complexes alcalins choisis présentent un large intervalle de composition chimique des amphiboles. La caractérisation des amphiboles par microscopie électronique et par spectroscopie Mössbauer contribuent à observer le contrôle du Fe sur le fractionnement des isotopes de l'hydrogène. En effet, cela a mis en évidence un contrôle du Fe sur le fractionnement et même, dans le cas du complexe hyperalcalin d'Ilímaussaq, une relation entre le rapport Fei3+/FeT et les variations du rapport D/H. Les complexes étudiés diffèrent de par leur index agpaïtique (Na+K/Al) et également de par leur contenu en fer. Les plus hautes valeurs en Fe (27-35 wt%) et en éléments alcalins dans les amphiboles, ainsi que les teneurs de D/H les plus basses et leur grande variation, sont celles du complexe d'Ilímaussaq. Les amphiboles de la Péninsule de Kola et du Canada sont similaires, mais toutefois moins appauvries en D. En ce qui concerne les amphiboles des complexes du NO de la Namibie, elles présentent des compositions isotopiques de l'hydrogène magmatiques normales (-73 à -100 0/00), contiennent moins de Fe (15-17 wt%) et sont fortement enrichies en Ca et moins en Na. Dans ce cas, l'alcalinité est moins importante en comparaison des autres complexes étudiés. En dehors des teneurs en éléments alcalins des amphiboles, l'alcalinité des fluides s'avère également un facteur important, ce qui est cohérent avec certaines suggestions à partir de systèmes expérimentaux. Afin de mieux contraindre ce facteur, des expériences d'échanges hydrothermaux entre les amphiboles et les fluides de salinité différente ont été effectuées en simulant des conditions naturelles. L'approximation d'amphiboles naturelles de complexes ignés alcalins, couplée aux expériences d'échange, aide à préciser les facteurs contrôlant le fractionnement des isotopes de l'hydrogène dans les roches alcalines. Les valeurs extrêmement basses de 3D des amphiboles de ces complexes alcalins peuvent être dues à une combinaison de différents facteurs, telles qu'une haute alcalinité, une haute teneur en Fe et une faible profondeur d'intrusion. Les grandes variations ainsi que les faibles valeurs de SD des amphiboles étudiées peuvent résulter d'un processus magmatique interne et il est peu probable que de l'eau météorique soit impliquée et/ou que le dégazage magmatique ait joué un rôle. THESIS ABSTRACT Major element and stable isotope compositions of amphiboles were analyzed from a number of alkaline and peralkaline igneous complexes in order to determine the importance of compositional variations in minerals to hydrogen isotope fractionations in natural mineral-melt-fluid systems. The thesis mainly focuses on nepheline syenites of well-studied, but chemically variable alkaline intrusive rocks, from which amphiboles and, if possible, other hydrous silicates such as micas and eudialytes were separated. The system of primary interest was the alkaline Ilímaussaq Complex of the Gardar Province of South Greenland. For the purpose of comparison additional samples were collected and examined from the Tugtutôq Complex (South Greenland), the Khibina and Lovozero Complexes (Kola Peninsular, Russia), Mount St-Hilaire and Mount Royal (Canada) and six further complexes from NW Namibia (Cape Cross, Okenyenya, Messum, Etaneno, Kalkfeld, and Okorusu). The hydrogen isotope compositions of amphiboles from the localities studied differ greatly, which is atypical for amphiboles from mantle, range between - 227 and - 700/00 (latter compatible with a simple mantle origin). As this wide range in compositions and the extreme depletion in the heavy hydrogen isotope (D) content relative to other igneous rocks appear to be unique to alkaline to peralkaline rocks of this type, a common process is indicated. The different alkaline complexes chosen cover a wide range of amphibole chemical compositions. Detailed chemical characterization of amphiboles by electron microprobe and Mössbauer spectroscopy analyses helped to constrain the control of Fe on the H-isotope fractionations. Complete characterization of the chemical compositions of the amphiboles support Fe-control on fractionations and at least for the peralkaline Ilímaussaq complex a relationship between Fe3+/FeT ratios and variations in D/H. The studied complexes differ in their agpaitic index (Na+K/Al) and also in their Fe-content. The most iron (27-35 wt. %) and alkaline element rich amphiboles, with the lowermost D/H ratio, as well with very wide range, are the ones from Ilímaussaq complex. Similar, but less D depleted amphiboles are from the Kola Peninsula and the Canadian localities. The complexes described from NW Namibia have amphiboles with normal magmatic hydrogen isotope composition (-730/00 to -1000/00), and have less Fe-content (15-17 wt. %), and are more Ca-and less Na-rich. In this case alkalinity is not that important in comparison to the other studied complexes. Beside the alkaline element contents in the amphiboles, the alkalinity of the fluids has been found to be an important factor, in conjunction with earlier suggestions from experimental systems. To further constrain this factor, hydrothermal exchange experiments between amphiboles and fluids of different salinity simulating natural conditions were performed. The approach of examining natural amphiboles from alkaline igneous complexes in parallel to performing exchange experiments - helped to further constrain the factors controlling the H-isotope fractionations in alkaline rocks. The observed changes between the hydrogen and oxygen isotope compositions of amphiboles and fluids before and after the experiments suggest that another phase was produced during the experiments, which influenced the final hydrogen isotope composition of the system. This presumably hydrous phase has also influenced the Fe3 +/Fe2+ ratio of the amphiboles, which became more oxidized. The extremely low SD values of amphiboles in these alkaline complexes may be due to a combination of different factors such as high alkalinity, high Fe-content, and shallow intrusion depths. This wide range and the low SD values of the amphiboles studied might be a result of internal, magmatic processes and it is unlikely that meteoric water was involved and/or magmatic degassing played an important role. RÉSUMÉ DE LA THÈSE (pour le grand public) Fractionnement isotopique de l'hydrogène entre amphiboles, micas et fluides dans des intrusions alcalines Zsófia Wáczek Directeur de thèse, Prof. Torsten W. Vennemann Institut de Minéralogie et Géochimie, Université de Lausanne Les roches alcalines et celles qui leurs sont associées sont des sources importantes de nombreux minéraux et minerais, tels l'apatite, le niobium, le diamant et autres pierres précieuses. Cette étude se concentre sur des complexes alcalins localisés dans le sud du Groenland, au Canada, dans la péninsule de Kola en Russie et au nord-ouest de la Namibie. Ces complexes sont composés de roches ayant cristallisé à partir de magmas et de fluides très enrichis en alcalins. Cet enrichissement permet la précipitation de minéraux inhabituels riches en potassium et/ou sodium, telles les amphiboles sodiques, également enrichies en fer. Les amphiboles étudiées ont des compositions calciques, sodi-calciques et sodiques, qui reflètent leurs différents environnements de formation. Des études précédentes ont révélé une large gamme de rapports isotopiques de l'hydrogène dans les amphiboles de roches hyperalcalines, dont certains extrêmement bas. Cette variation importante est très intrigante, sachant que des valeurs entre -40 et -800/00 correspondent à des silicates ignés hydratés et non altérés, alors que des valeurs descendant jusqu'a -1500/00 nécessiteraient une altération par de l'eau météorique et/ou une contamination par les roches environnantes ou des sédiments riches en matière organique. Dans lé cas précis du complexe d'Ilímaussaq (sud du Groenland), aucune de ces explications n'a pu être démontrée et des valeurs encore plus faibles ont été trouvées. Le complexe d'Ilímaussaq présente des valeurs de rapport isotopique de l'hydrogène entre -227 et -500/00 dans les amphiboles. Une origine mantellique permet d'expliquer les valeurs élevées, mais d'autres processus doivent entrer en jeu pour engendrer les valeurs les plus négatives. C'est à l'identification de ces processus que nous nous sommes attachés dans ce travail. Les grandes variations observées dans les teneurs en fer et dans le rapport Fe3+/FeT des roches et des minéraux de ces complexes sont corrélées avec d'autres paramètres chimiques, tels que la composition isotopique de l'hydrogène dans les amphiboles. Nous avons dès lors abordé les questions suivantes: quelle est la relation entre la teneur en fer des amphiboles et leur composition isotopique? Que nous apprennent les changements de la teneur en fer et les changements dans le rapport Fe3+/FeT sur les processus pétrologiques dans ces roches? Pour répondre à ces questions, nous avons analysé les compositions isotopiques de l'oxygène et de l'hydrogène dans les amphiboles et d'autres silicates hydratés. La composition chimique et le rapport Fe3+/FeT des amphiboles ont également été déterminés. Des expériences hydrothermales simulant des conditions naturelles ont été entreprises afin de mieux comprendre les processus de fractionnement isotopiques dans ces systèmes très alcalins. Nos conclusions sont les suivantes: (1) Les valeurs extrêmement faibles ainsi que les larges variations des rapports isotopiques de l'hydrogène des amphiboles de ces complexes alcalins sont dues à une combinaison de facteurs tels que la forte alcalinité, la haute teneur en fer et la profondeur très faible de l'intrusion. (2) Ces valeurs sont probablement le résultat de processus magmatiques internes. (3) Il est peu probable que les eaux météoriques et/ou le dégazage magmatique aient joué un rôle lors de la formation de ces amphiboles. (4) Certaines corrélations, en accord avec les études précédentes, ont pu être trouvées au niveau des concentrations en fer. (5) Dans le cas du complexe d'Ilímaussaq exclusivement, une relation a été trouvée entre le rapport Fe3+/FeT et la composition isotopique de l'hydrogène des amphiboles.
Resumo:
Detailed field mapping and paleontological dating in the central and southeastern Nicoya Peninsula has revealed Late Cretaceous and Paleogene radiolarian-bearing siliceous mudstones. These rocks belong to two terranes (Matambfi and Manzanillo) that are partially contemporaneous with the Nicoya Complex, but are genetically different. While the Nicoya Complex is formed exclusively by intraplate igneous rocks with associated radiolarites, the studied sections include variable amounts of are-derived volcanic and terrigenous materials. These fore-arc terranes include mafic to intermediate volcaniclastics and associated pelagic and hemipelagic rocks rich in biogenic silica. Radiolarian preservation in these sediments is often enhanced by the presence of silica-saturated volcanic tuffs and debris. Seven out of 29 samples from different outcrops yielded relatively well-preserved radiolarian faunas. In total, 60 species belonging to 34 genera were present in these faunas, ranging in age from middle Turonian-Santonian to late Thanetian-Ypresian.
Resumo:
The Mantoverde iron oxide copper-gold (IOCC) district, northern Chile, is known for its Cu production from supergene ores. Recently, exploration outlined an additional hypogene ore resource of 440 Mt with 0.56 percent Cu, and 0.12 g/t An. The hypogene sulfide mineralization occurs mainly as chalcopyrite and pyrite, typically in specularite or magnetite-cemented breccias and associated stockworks. The host rocks underwent variably intense K feldspar alteration, chloritization, sericitization, silicification, and/or carbonatization. A district scale Na(-Ca) alteration is absent. The IOCC mineralization in the district shows a strong tectonic control by northwest- to north-northwest-trending brittle structures. Large Cu sulfide-rich veins or Cu sulfide-cemented breccias are absent. Therefore, head grades of 4 percent Cu are an exception. There is a positive correlation between Cu and An grades. Gold is probably contained mostly in chalcopyrite and pyrite. Elevated concentrations of light rare-earth elements (LREE) occur locally but are attributed to redistribution of LREE within the deposits rather than to derivation from external sources. The Cu-Au ores in the Mantoverde district are low in and have relatively low contents in heavy metals that are potentially hazardous to the environment, such as As (avg 14 ppm), Hg (<5 ppm), or Cd (<0.2 ppm). The sulfur isotope ratios of chalcopyrite from the IOCC deposits lie between -5.6 and 8.9 per mil delta(34)S(VCDT). They show systematic variations within the district, which are interpreted to reflect relative distance to inferred fluid conduits and the level of deposition within the hydrothermal system. Most initial (87)Sr/(86)Sr values of altered volcanic rocks and hydrothermal calcite from the Mantoverde district are between 0.7031 and 0.7060 and are similar to those of the igneous rocks of the region. Lead isotope ratios of chalcopyrite are consistent with Pb (and by inference Cu) derived from Early Cretaceous magmatism. The sulfur, strontium, and lead isotope data of chalcopyrite, calcite gangue, or altered host rocks, respectively, are compatible with a genetic model that involves cooling of metal and sulfur-bearing magmatic-hydrothermal fluids that mix with meteoric waters or seawater at relatively shallow crustal levels. An additional exotic sulfur input is likely, though not required, for the copper mineralization. Apart from the IOCC. deposits, there are a number of smaller magnetite(-apatite) bodies in the district. These are geologically similar to the Cu-Au-bearing magnetite bodies, but are related to splays of the north-south-trending Atacama fault zone and differ in alteration and texture.
Resumo:
We present a new model to explain the origin, emplacement and stratigraphy of the Nicoya Complex in the NW part of the Nicoya Peninsula (Costa Rica) based on twenty-five years of field work, accompanied with the evolution of geochemical, vulcanological, petrological, sedimentological and paleontological paradigms. The igneous-sedimentary relation, together with radiolarian biochronology of the NW-Nicoya Peninsula is re-examined. We interpret the Nicoya Complex as a cross-section of a fragment of the Late Cretaceous Caribbean Plateau, in which the deepest levels are exposed in the NW-Nicoya Peninsula. Over 50% of the igneous rocks are intrusive (gabbros and in less proportion plagiogranites) which have a single mantle source; the remainder are basalts with a similar geochemical signature. Ar39/Ar40 radioisotopic whole rock and plagioclase ages range throughout the area from 84 to 83 Ma (Santonian) for the intrusives, and from 139 to 88 Ma (Berriasian-Turonian) for the basalts. In contrast, Mn-radiolarites that crop out in the area are older in age, Bajocian (Middle Jurassic) to Albian (middle Cretaceous). These Mn-radiolaritic blocks are set in a "matrix" of multiple gabbros and diabases intrusions. Chilled margins of magmatites, and hydrothermal baking and leaching of the radiolarites confirm the Ar39/Ar40 dating of igneous rocks being consistently younger than most of the radiolarian cherts. No Jurassic magmatic basement has been identified on the Nicoya Peninsula. We interpret the Jurassic-Cretaceous chert sediment pile to have been disrupted and detached from its original basement by multiple magmatic events that occurred during the formation of the Caribbean Plateau. Coniacian-Santonian (Late Cretaceous), Fe-rich radiolarites are largely synchronous and associated with late phases of the Plateau.
Resumo:
Although hydrocarbon-bearing fluids have been known from the alkaline igneous rocks of the Khibiny intrusion for many years, their origin remains enigmatic. A recently proposed model of post-magmatic hydrocarbon (HC) generation through Fischer-Tropsch (FT) type reactions suggests the hydration of Fe-bearing phases and release of H-2 which reacts with magmatically derived CO2 to form CH4 and higher HCs. However, new petrographic, microthermometric, laser Raman, bulk gas and isotope data are presented and discussed in the context of previously published work in order to reassess models of HC generation. The gas phase is dominated by CH4 with only minor proportions of higher hydrocarbons. No remnants of the proposed primary CO2-rich fluid are found in the complex. The majority of the fluid inclusions are of secondary nature and trapped in healed microfractures. This indicates a high fluid flux after magma crystallisation. Entrapment conditions for fluid inclusions are 450-550 degrees C at 2.8-4.5 kbar. These temperatures are too high for hydrocarbon gas generation through the FT reaction. Chemical analyses of rims of Fe-rich phases suggest that they are not the result of alteration but instead represent changes in magma composition during crystallisation. Furthermore, there is no clear relationship between the presence of Fe-rich minerals and the abundance of fluid inclusion planes (FIPs) as reported elsewhere. delta C-13 values for methane range from -22.4% to -5.4%, confirming a largely abiogenic origin for the gas. The presence of primary CH4-dominated fluid inclusions and melt inclusions, which contain a methane-rich gas phase, indicates a magmatic origin of the HCs. An increase in methane content, together with a decrease in delta C-13 isotope values towards the intrusion margin suggests that magmatically derived abiogenic hydrocarbons may have mixed with biogenic hydrocarbons derived from the surrounding country rocks. (C) 2006 Elsevier BV. All rights reserved.
Resumo:
Amphibole fractionation in the deep roots of subduction-related magmatic arcs is a fundamental process for the generation of the continental crust. Field relations and geochemical data of exposed lower crustal igneous rocks can be used to better constrain these processes. The Chelan Complex in the western U. S. forms the lowest level of a 40-km thick exposed crustal section of the North Cascades and is composed of olivine websterite, pyroxenite, hornblendite, and dominantly by hornblende gabbro and tonalite. Magmatic breccias, comb layers and intrusive contacts suggest that the Chelan Complex was build by igneous processes. Phase equilibria, textural observations and mineral chemistry yield emplacement pressures of similar to 1.0 GPa followed by isobaric cooling to 700 degrees C. The widespread occurrence of idiomorphic hornblende and interstitial plagioclase together with the lack of Eu anomalies in bulk rock compositions indicate that the differentiation is largely dominated by amphibole. Major and trace element modeling constrained by field observations and bulk chemistry demonstrate that peraluminous tonalite could be derived by removing successively 3% of olivine websterite, 12% of pyroxene hornblendite, 33% of pyroxene hornblendite, 19% of gabbros, 15% of diorite and 2% tonalite. Peraluminous tonalite with high Sr/Y that are worldwide associated with active margin settings can be derived from a parental basaltic melt by crystal fractionation at high pressure provided that amphibole dominates the fractionation process. Crustal assimilation during fractionation is thus not required to generate peraluminous tonalite.
Resumo:
Four distinct rock units have been recognized near El Aguacate, in the Janico-Juncalito-La Vega area of the Duarte complex (Dominican Republic): (1) serpentinites crosscut by numerous diabasic dikes, (2) basalts interbedded with Late Jurassic ribbon cherts, (3) picrites and ankaramites relatively enriched in incompatible trace elements, and (4) amphibolites and gneissic amphibolites chemically similar to Oceanic Plateau Basalts. Similar Ar-Ar ages of late magmatic amphibole from a picrite, and hornblende from an amphibolite (86.1 +/- 1.3 Ma and 86.7 +/- 1.6 Ma, respectively), suggest that the Duarte picrites are contemporaneous with the Deep Sea Drilling Program Leg 15 and Ocean Drilling Program Leg 126 basalts drilled from the Caribbean oceanic plateau. These basalts are associated with sediments containing Late Cretaceous faunas. Sr, Nd, and Pb data show that enriched picrites and amphibolites are isotopically similar to mafic lavas from previously described Caribbean plateau and Galapagos hotspot basalts. Major element, trace element, and lead isotopic features of Late Jurassic basalts and diabases are consistent with those of normal oceanic crust basalt. However, these basalts differ from typical N-MORB because they have lower epsilon Nd ratios that plot within the range of Ocean Island Basalts. These rocks appear to represent remnants of the Caribbean Jurassic oceanic crust formed from an oceanic ridge possibly close to a hotspot. Later, they were tectonically juxtaposed with Late Cretaceous slices of the Caribbean-Colombian plateau.
Resumo:
The Totalp-Platta-Malenco ophiolites in the Eastern Central Alps offer a unique opportunity to study the behaviour of Li, Be and B in ultramafic rocks in response to serpentinization and to progressive Alpine metamorphism. These units represent the remnants of a former ocean-continent transition that was intensely serpentinized during exposure on the Jurassic seafloor of the Ligurian Tethys. From north to the south, three isograd reactions (lizardite double right arrow antigorite + brucite; lizardite + talc double right arrow antigorite; lizardite + tremolite double right arrow antigorite + diopside) have been used to quantify the evolution of the light element content of metamorphic minerals. We determined the Li, Be and B concentrations in major silicate minerals from the ultramafic bodies of Totalp, Platta and Malenco by secondary ion mass spectrometry. Mantle minerals have Be concentrations (e.g. <0.001-0.009 mu g/g in olivine) similar to the metamorphic minerals that replace them (e.g. <0.001-0.016 mu g/g in serpentine). The mantle signature of Be is thus neither erased during seafloor alteration nor by progressive metamorphism from prehnite-pumpellyite to epidote-amphibolite facies. In contrast, the Li and B inventories of metamorphic minerals are related to the lizardite-to-antigorite transition. Both elements display higher concentrations in the low-temperature serpentine polymorph lizardite (max. 156 mu/g Li, max. 318 mu g/g B) than in antigorite (max. 0.11 mu g/g Li, max. 12 mu g/g B). Calculated average B/Li ratios for lizardite (similar to 1395) and antigorite (similar to 115) indicate that Li fractionates from B during the lizardite-to-antigorite transition during prograde metamorphism in ultramafic rocks. In subduction zones, this signature is likely to be recorded in the B-rich nature of forearc fluids. Relative to oceanic mantle the Be content of mantle clinopyroxene is much higher, but similar to Be values from mantle xenoliths and subduction-related peridotite massifs. These data support previous hypothesis that the mantle rocks from the Eastern Central Alps have a subcontinental origin. We conclude that Be behaves conservatively during subduction metamorphism of ultramafic rocks, at least at low-temperature, and thus retains the fingerprint of ancient subduction-related igneous events in mantle peridotites. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
To evaluate the role of garnet and amphibole fractionation at conditions relevant for the crystallization of magmas in the roots of island arcs, a series of experiments were performed on a synthetic andesite at conditions ranging from 0.8 to 1.2 GPa, 800-1,000 degrees C and variable H2O contents. At water undersaturated conditions and fO(2) established around QFM, garnet has a wide stability field. At 1.2 GPa garnet ? amphibole are the high-temperature liquidus phases followed by plagioclase at lower temperature. Clinopyroxene reaches its maximal stability at H2O-contents <= 9 wt% at 950 degrees C and is replaced by amphibole at lower temperature. The slopes of the plagioclase-in boundaries are moderately negative in T-XH2O space. At 0.8 GPa, garnet is stable at magmatic H2O contents exceeding 8 wt% and is replaced by spinel at decreasing dissolved H2O. The liquids formed by crystallization evolve through continuous silica increase from andesite to dacite and rhyolite for the 1.2 GPa series, but show substantial enrichment in FeO/MgO for the 0.8 GPa series related to the contrasting roles of garnet and amphibole in fractionating Fe-Mg in derivative liquids. Our experiments indicate that the stability of igneous garnet increases with increasing dissolved H2O in silicate liquids and is thus likely to affect trace element compositions of H2O-rich derivative arc volcanic rocks by fractionation. Garnet-controlled trace element ratios cannot be used as a proxy
Resumo:
This study reassesses the development of compositional layering during the growth of granitic plutons, with emphasis on fractional crystallization and its interaction with both injection and inflation-related deformation. The Dolbel batholith (SW Niger) consists of 14, kilometre-sized plutons emplaced by pulsed magma inputs. Each pluton has a coarse-grained core and a peripheral layered series. Rocks consist of albite (An(<= 11)), K-feldspar (Or(96 99), Ab(1) (4)), quartz, edenite (X(Mg)=0337-0.55), augite (X(Mg)=0.65-0.72) and accessories (apatite, titanite and Fe-Ti-oxides). Whole-rock compositions are metaluminous, sodic (K(2)O/Na(2)O=0.49-0.62) and iron-rich [FeO(tot)/(FeO(tot)+MgO)=0.65-0.82]. The layering is present as size-graded and modally graded, sub-vertical, rhythmic units. Each unit is composed of three layers, which are, towards the interior: edenite +/- plagioclase (C(a/p)), edenite+plagioclase+augite+quartz (C(q)), and edenite+plagioclase+augite+quartz+K-feldspar (C(k)). All phases except quartz show zoned microstructures consisting of external intercumulus overgrowths, a central section showing oscillatory zoning and, in the case of amphibole and titanite, complexly zoned cores. Ba and Sr contents of feldspars decrease towards the rims. Plagioclase crystal size distributions are similar in all units, suggesting that each unit experienced a similar thermal history. Edenite, characteristic of the basal C(a/p) layer, is the earliest phase to crystallize. Microtextures and phase diagrams suggest that edenite cores may have been brought up with magma batches at the site of emplacement and mechanically segregated along the crystallized wall, whereas outer zones of the same crystals formed in situ. The subsequent C(q) layers correspond to cotectic compositions in the Qz-Ab-Or phase diagram at P(H2O)=5 kbar. Each rhythmic unit may therefore correspond to a magma batch and their repetition to crystallization of recurrent magma recharges. Microtextures and chemical variations in major phases allow four main crystallization stages to be distinguished: (1) open-system crystallization in a stirred magma during magma emplacement, involving dissolution and overgrowth (core of edenite and titanite crystals); (2) in situ fractional crystallization in boundary layers (C(a/p) and C(q) layers); (3) equilibrium `en masse' eutectic crystallization (C(k) layers); (4) compaction and crystallization of the interstitial liquid in a highly crystallized mush (e. g. feldspar intercumulus overgrowths). It is concluded that the formation of the layered series in the Dolbel plutons corresponds principally to in situ differentiation of successive magma batches. The variable thickness of the Ck layers and the microtextures show that crystallization of a rhythmic unit stops and it is compacted when a new magma batch is injected into the chamber. Therefore, assembly of pulsed magma injections and fractional crystallization are independent, but complementary, processes during pluton construction.
Resumo:
Petrographic, mineralogical, and stable isotopes (delta C-13, delta O-18 values) compositions were used to characterise marbles and sedimentary carbonate rocks from central Morocco, which are considered to be a likely source of ornamental and building material from Roman time to the present day. This new data set was used in the frame of an archaeometric provenance study on Roman artefacts from the town of Thamusida (Kenitra, north Morocco), to assess the potential employment of these rocks for the manufacture of the archaeological materials. A representative set of samples from marbles and other carbonate rocks (limestone, dolostone) were collected in several quarries and outcrops in the Moroccan Meseta, in a region extending from the Meknes-Khenifra alignment to the Atlantic Ocean. All the samples were studied using a petrographic, mineralogical and geochemical methods. The petrographic and minerological investigations (optical microscopy, electron microscopy, X-ray diffraction) allowed to group the carbonate rocks in limestones, foliated limestone, diagenetic breccias and dolostone. The limestones could be further grouped as mudstones, wackestones-packstones, crinoid grainstones, oolitic grainstone and floatstones. Textural differences allowed to define marbles varieties. The stable carbon and oxygen isotope composition proved to be quite useful in the discrimination of marble sources, with apparently less discriminatory potential for carbonate rocks.
Resumo:
Migmatization of gabbroic rocks at 2-3 kbar has occurred in the metamorphic contact aureole of a mafic pluton in the Fuerteventura Basal Complex (Canary Island;). Migmatites are characterized by a dense network: of closely spaced millimetre-wide leucocratic veins with perfectly preserved igneous textures. They are all relatively enriched in Al, Na I: Sr Ba, Nb, Y and the rare earth elements compared with the unaffected country rock beyond the aureole. Migmatization under such low-pressure conditions war possible because of the unusual tectonic and magmatic contact in which ii occurred. Multiple basic intrusions associated with extrusive volcanic activity created high heat flow in a small area. Alkaline and metasomatized rocks present in the country rock of the intruding pluton were leached by high-temperature fluids during contact metamorphism. These enriched fluids then favoured partial melting of the host gabbroic rocks, and contaminated both the leucosomes and melanosomes. A transpressive tectonic setting at the time of intrusion created shearing along the contact between the intrusion and its host rock. This shearing enhanced circulation of the fluids and allowed segregation of the nea-formed melts from their restite by opening tension veins into which the melts migrated. Depending on the relative timing of melt segregation and recrystallization leucosomes range in composition from a 40-60% mixture of clinopyroxene (+/- amphibole) and plagioclase to almost pure feldspathic veins. Comparable occurrences of gabbros migmatized at low pressure are expected only at a snail scale in localized areas of high heat flow in the presence of fluids, such as in. mid-ocean ridges or ocean-islands.