9 resultados para Algebraic Equations

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Little information is available on the validity of simple and indirect body-composition methods in non-Western populations. Equations for predicting body composition are population-specific, and body composition differs between blacks and whites. OBJECTIVE: We tested the hypothesis that the validity of equations for predicting total body water (TBW) from bioelectrical impedance analysis measurements is likely to depend on the racial background of the group from which the equations were derived. DESIGN: The hypothesis was tested by comparing, in 36 African women, TBW values measured by deuterium dilution with those predicted by 23 equations developed in white, African American, or African subjects. These cross-validations in our African sample were also compared, whenever possible, with results from other studies in black subjects. RESULTS: Errors in predicting TBW showed acceptable values (1.3-1.9 kg) in all cases, whereas a large range of bias (0.2-6.1 kg) was observed independently of the ethnic origin of the sample from which the equations were derived. Three equations (2 from whites and 1 from blacks) showed nonsignificant bias and could be used in Africans. In all other cases, we observed either an overestimation or underestimation of TBW with variable bias values, regardless of racial background, yielding no clear trend for validity as a function of ethnic origin. CONCLUSIONS: The findings of this cross-validation study emphasize the need for further fundamental research to explore the causes of the poor validity of TBW prediction equations across populations rather than the need to develop new prediction equations for use in Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce an algebraic operator framework to study discounted penalty functions in renewal risk models. For inter-arrival and claim size distributions with rational Laplace transform, the usual integral equation is transformed into a boundary value problem, which is solved by symbolic techniques. The factorization of the differential operator can be lifted to the level of boundary value problems, amounting to iteratively solving first-order problems. This leads to an explicit expression for the Gerber-Shiu function in terms of the penalty function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Spirometry reference values are important for the interpretation of spirometry results. Reference values should be updated regularly, derived from a population as similar to the population for which they are to be used and span across all ages. Such spirometry reference equations are currently lacking for central European populations. OBJECTIVE: To develop spirometry reference equations for central European populations between 8 and 90 years of age. MATERIALS: We used data collected between January 1993 and December 2010 from a central European population. The data was modelled using "Generalized Additive Models for Location, Scale and Shape" (GAMLSS). RESULTS: The spirometry reference equations were derived from 118'891 individuals consisting of 60'624 (51%) females and 58'267 (49%) males. Altogether, there were 18'211 (15.3%) children under the age of 18 years. CONCLUSION: We developed spirometry reference equations for a central European population between 8 and 90 years of age that can be implemented in a wide range of clinical settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Growth is a central process in paediatrics. Weight and height evaluation are therefore routine exams for every child but in some situation, particularly inflammatory bowel disease (IBD), a wider evaluation of nutritional status needs to be performed. The assessment of body composition is essential in order to maintain acceptable growth using the following techniques: Dual-energy X-ray absorptiometry (DEXA), bio-impedance-analysis (BIA) and anthropometric measurements (skinfold thickness skin), the latter being most easily available and most cost effective. Objectives: To assess the accuracy of skinfold equations in estimating percentage body fat (%BF) in children with inflammatory bowel disease (IBD), compared with assessment of body fat dual energy X-ray absorptiometry (DEXA). Methods: Twenty-one patients (11 females, 10 males; mean age: 14.3 years, range 12 - 16 years) with IBD (Crohn's disease n = 15, ulcerative colitis n = 6)). Estimated%BF was computed using 6 established equations based on the triceps, biceps, subscapular and suprailiac skinfolds (Deurenberg, Weststrate, Slaughter, Durnin & Rahaman, Johnston, Brook) and compared to DEXA. Concordance analysis was performed using Lin's concordance correlation and the Bland-Altman limits of agreement method. Results: Durnin & Rahaman's equation shows a higher Lin's concordance coefficient with a small difference amongst raw values for skinfolds and DEXA compared to the other equations. Correlation coefficient between mean and difference is close to zero with a non-significant Bradley-Blackwood test. Conclusion: Body composition in paediatric IBD patients using the Durnin & Rahaman skinfold-equation adequately reflects values obtained by DEXA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The aim of the study was to statistically model the relative increased risk of cardiovascular disease (CVD) per year older in Data collection on Adverse events of anti-HIV Drugs (D:A:D) and to compare this with the relative increased risk of CVD per year older in general population risk equations. METHODS: We analysed three endpoints: myocardial infarction (MI), coronary heart disease (CHD: MI or invasive coronary procedure) and CVD (CHD or stroke). We fitted a number of parametric age effects, adjusting for known risk factors and antiretroviral therapy (ART) use. The best-fitting age effect was determined using the Akaike information criterion. We compared the ageing effect from D:A:D with that from the general population risk equations: the Framingham Heart Study, CUORE and ASSIGN risk scores. RESULTS: A total of 24 323 men were included in analyses. Crude MI, CHD and CVD event rates per 1000 person-years increased from 2.29, 3.11 and 3.65 in those aged 40-45 years to 6.53, 11.91 and 15.89 in those aged 60-65 years, respectively. The best-fitting models included inverse age for MI and age + age(2) for CHD and CVD. In D:A:D there was a slowly accelerating increased risk of CHD and CVD per year older, which appeared to be only modest yet was consistently raised compared with the risk in the general population. The relative risk of MI with age was not different between D:A:D and the general population. CONCLUSIONS: We found only limited evidence of accelerating increased risk of CVD with age in D:A:D compared with the general population. The absolute risk of CVD associated with HIV infection remains uncertain.