6 resultados para Aka paratypica
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: Most existing methods for accelerated parallel imaging in MRI require additional data, which are used to derive information about the sensitivity profile of each radiofrequency (RF) channel. In this work, a method is presented to avoid the acquisition of separate coil calibration data for accelerated Cartesian trajectories. METHODS: Quadratic phase is imparted to the image to spread the signals in k-space (aka phase scrambling). By rewriting the Fourier transform as a convolution operation, a window can be introduced to the convolved chirp function, allowing a low-resolution image to be reconstructed from phase-scrambled data without prominent aliasing. This image (for each RF channel) can be used to derive coil sensitivities to drive existing parallel imaging techniques. As a proof of concept, the quadratic phase was applied by introducing an offset to the x(2) - y(2) shim and the data were reconstructed using adapted versions of the image space-based sensitivity encoding and GeneRalized Autocalibrating Partially Parallel Acquisitions algorithms. RESULTS: The method is demonstrated in a phantom (1 × 2, 1 × 3, and 2 × 2 acceleration) and in vivo (2 × 2 acceleration) using a 3D gradient echo acquisition. CONCLUSION: Phase scrambling can be used to perform parallel imaging acceleration without acquisition of separate coil calibration data, demonstrated here for a 3D-Cartesian trajectory. Further research is required to prove the applicability to other 2D and 3D sampling schemes. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type (lepto-SEMDJL, aka SEMDJL, Hall type), is an autosomal dominant skeletal disorder that, in spite of being relatively common among skeletal dysplasias, has eluded molecular elucidation so far. We used whole-exome sequencing of five unrelated individuals with lepto-SEMDJL to identify mutations in KIF22 as the cause of this skeletal condition. Missense mutations affecting one of two adjacent amino acids in the motor domain of KIF22 were present in 20 familial cases from eight families and in 12 other sporadic cases. The skeletal and connective tissue phenotype produced by these specific mutations point to functions of KIF22 beyond those previously ascribed functions involving chromosome segregation. Although we have found Kif22 to be strongly upregulated at the growth plate, the precise pathogenetic mechanisms remain to be elucidated.
Resumo:
The objective of this essay is to reflect on a possible relation between entropy and emergence. A qualitative, relational approach is followed. We begin by highlighting that entropy includes the concept of dispersal, relevant to our enquiry. Emergence in complex systems arises from the coordinated behavior of their parts. Coordination in turn necessitates recognition between parts, i.e., information exchange. What will be argued here is that the scope of recognition processes between parts is increased when preceded by their dispersal, which multiplies the number of encounters and creates a richer potential for recognition. A process intrinsic to emergence is dissolvence (aka submergence or top-down constraints), which participates in the information-entropy interplay underlying the creation, evolution and breakdown of higher-level entities.
Resumo:
Ischaemic heart disease as the result of impaired blood supply is currently the leading cause of failure and death. Ischaemic heart disease refers to a group of clinicopathological symptoms including angina pectoris, acute myocardial infection, chronic ischemic heart disease, as well as heart failure and sudden cardiac death. Coronary artery ischemic heart disease, as well as heart failure and sudden cardiac death. Coronary artery thrombosis is the most common cause of acute myocardial infarction and sudden cardiac death. A thrombotic event is the result of two different processes: plaque disruption and endothelial erosion. The morphology of a "vulnerable plaque" is more clinically indicative than the plaque volume and the degree of luminal stenosis. However, identification of patients with vulnerable plaques remains very challenging and demands the development of new methods of coronary plaque imaging. Sudden death resulting from ventricular fibrillation or AV block frequently complicates coronary thrombosis, accounting for up to 50% of mortality.If a coronary artery is occluded for more than 20 min, irreversible damage to the pericardium occurs. Timely coronary recanalization and myocardial reperfusion limit the extent of myocardial necrosis, but may induce "reperfusion injuries", stunned myocardium, or reperfused myocardial hemorrhagic infarcts, all of which are related to infarct siz and coronary occlusion time. Reperfusion injuries have been described after cardiac surgery, percutaneous transluminal coronary angioplasty, and fibrinolysis. A prolonged imbalance between the supply of and demand for myocardial oxygen and nutrition leads to a subacute, acute, or chronic state (aka hibernating myocardium) of myocardial ischemia. Ischemic heart disease is bwelieved to be the underlying cause of heart failure in approximately two-thirds of patients, resulting from acute and/or chronic injury to the heart.
Resumo:
The importance of the lateral hypothalamus in the pursuit of reward has long been recognized. However, the hypothalamic neuronal network involved in the regulation of reward still remains partially unknown. Hypocretins (aka orexins) are neuropeptides synthesized by a few thousand neurons restricted to the lateral hypothalamus and the perifornical area. Compelling evidence indicates that hypocretin neurons receive inputs from sensory and limbic systems and drive hyper-arousal possibly through modulation of stress responses. Major advances have been made in the elucidation of the hypocretin involvement in the regulation of arousal, stress, motivation, and reward seeking, without clearly defining the role of hypocretins in addictionrelated behaviors. We have recently gathered substantial evidence that points to a previously unidentified role for hypocretin-1 in driving relapse for cocaine seeking through activation of brain stress pathways. Meanwhile, several authors published concordant observations rather suggesting a direct activation of the mesolimbic dopamine system. In particular, hypocretin-1 has been shown to be critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area. Overall, on can conclude from recent findings that activation of hypocretin/orexin neurons plays a critical role in the development of the addiction process, either by contributing to brain sensitization (which is thought to lead to the unmanageable desire for drug intake) or by modulating the brain reward system that, in coordination with brain stress systems, leads to a vulnerable state that may facilitate relapse for drug seeking behavior.