10 resultados para Airway Inflammation
em Université de Lausanne, Switzerland
Resumo:
Inflammation can promote or inhibit cancer progression. In this study we have addressed the role of the proinflammatory cytokine thymic stromal lymphopoietin (TSLP) during skin carcinogenesis. Using conditional loss- and gain-of-function mouse models for Notch and Wnt signaling, respectively, we demonstrate that TSLP-mediated inflammation protects against cutaneous carcinogenesis by acting directly on CD4 and CD8 T cells. Genetic ablation of TSLP receptor (TSLPR) perturbs T-cell-mediated protection and results in the accumulation of CD11b(+)Gr1(+) myeloid cells. These promote tumor growth by secreting Wnt ligands and augmenting β-catenin signaling in the neighboring epithelium. Epithelial specific ablation of β-catenin prevents both carcinogenesis and the accumulation of CD11b(+)Gr1(+) myeloid cells, suggesting tumor cells initiate a feed-forward loop that induces protumorigenic inflammation.
Resumo:
Airway epithelial cells were shown to drive the differentiation of monocytes into dendritic cells (DCs) with a suppressive phenotype. In this study, we investigated the impact of virus-induced inflammatory mediator production on the development of DCs. Monocyte differentiation into functional DCs, as reflected by the expression of CD11c, CD123, BDCA-4, and DC-SIGN and the capacity to activate T cells, was similar for respiratory syncytial virus (RSV)-infected and mock-infected BEAS-2B and A549 cells. RSV-conditioned culture media resulted in a partially mature DC phenotype, but failed to up-regulate CD80, CD83, CD86, and CCR7, and failed to release proinflammatory mediators upon Toll-like receptor (TLR) triggering. Nevertheless, these DCs were able to maintain an antiviral response by the release of Type I IFN. Collectively, these data indicate that the airway epithelium maintains an important suppressive DC phenotype under the inflammatory conditions induced by infection with RSV.
Resumo:
Asbestos exposure can result in serious and frequently lethal diseases, including malignant mesothelioma. The host sensor for asbestos-induced inflammation is the NLRP3 inflammasome and it is widely assumed that this complex is essential for asbestos-induced cancers. Here, we report that acute interleukin-1β production and recruitment of immune cells into peritoneal cavity were significantly decreased in the NLRP3-deficient mice after the administration of asbestos. However, NLRP3-deficient mice displayed a similar incidence of malignant mesothelioma and survival times as wild-type mice. Thus, early inflammatory reactions triggered by asbestos are NLRP3-dependent, but NLRP3 is not critical in the chronic development of asbestos-induced mesothelioma. Notably, in a two-stage carcinogenesis-induced papilloma model, NLRP3-deficient mice showed a resistance phenotype in two different strain backgrounds, suggesting a tumour-promoting role of NLRP3 in certain chemically-induced cancer types.
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
Increasingly the development of novel therapeutic strategies is taking into consideration the contribution of the intestinal microbiota to health and disease. Dysbiosis of the microbial communities colonizing the human intestinal tract has been described for a variety of chronic diseases, such as inflammatory bowel disease, obesity and asthma. In particular, reduction of several so-called probiotic species including Lactobacilli and Bifidobacteria that are generally considered to be beneficial, as well as an outgrowth of potentially pathogenic bacteria is often reported. Thus a tempting therapeutic approach is to shape the constituents of the microbiota in an attempt to restore the microbial balance towards the growth of 'health-promoting' bacterial species. A twist to this scenario is the recent discovery that the respiratory tract also harbors a microbiota under steady-state conditions. Investigators have shown that the microbial composition of the airway flora is different between healthy lungs and those with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease as well as cystic fibrosis. This is an emerging field, and thus far there is very limited data showing a direct contribution of the airway microbiota to the onset and progression of disease. However, should future studies provide such evidence, the airway microbiota might soon join the intestinal microbiota as a target for therapeutic intervention. In this review, we highlight the major advances that have been made describing the microbiota in chronic lung disease and discuss current and future approaches concerning manipulation of the microbiota for the treatment and prevention of disease.
Resumo:
An acute attack of gout is a paradigm of acute sterile inflammation, as opposed to pyogenic inflammation. Recent studies suggest that the triggering of IL-1beta release from leucocytes lies at the heart of a cascade of processes that involves multiple cytokines and mediators. The NLRP3 inflammasome appears to have a specific role in this regard, but the biochemical events leading to its activation are still not well understood. We review the known mechanisms that underlie the inflammatory process triggered by urate crystals and suggest areas that require further research.
Resumo:
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
Resumo:
OBJECTIVES: To learn upon incidence, underlying mechanisms and effectiveness of treatment strategies in patients with central airway and pulmonary parenchymal aorto-bronchial fistulation after thoracic endovascular aortic repair (TEVAR). METHODS: Analysis of an international multicentre registry (European Registry of Endovascular Aortic Repair Complications) between 2001 and 2012 with a total caseload of 4680 TEVAR procedures (14 centres). RESULTS: Twenty-six patients with a median age of 70 years (interquartile range: 60-77) (35% female) were identified. The incidence of either central airway (aorto-bronchial) or pulmonary parenchymal (aorto-pulmonary) fistulation (ABPF) in the entire cohort after TEVAR in the study period was 0.56% (central airway 58%, peripheral parenchymal 42%). Atherosclerotic aneurysm formation was the leading indication for TEVAR in 15 patients (58%). The incidence of primary endoleaks after initial TEVAR was n = 10 (38%), of these 80% were either type I or type III endoleaks. Fourteen patients (54%) developed central left bronchial tree lesions, 11 patients (42%) pulmonary parenchymal lesions and 1 patient (4%) developed a tracheal lesion. The recognized mechanism of ABPF was external compression of the bronchial tree in 13 patients (50%), the majority being due to endoleak formation, further ischaemia due to extensive coverage of bronchial feeding arteries in 3 patients (12%). Inflammation and graft erosion accounted for 4 patients (30%) each. Cumulative survival during the entire study period was 39%. Among deaths, 71% were attributed to ABPF. There was no difference in survival in patients having either central airway or pulmonary parenchymal ABPF (33 vs 45%, log-rank P = 0.55). Survival with a radical surgical approach was significantly better when compared with any other treatment strategy in terms of overall survival (63 vs 32% and 63 vs 21% at 1 and 2 years, respectively), as well as in terms of fistula-related survival (63 vs 43% and 63 vs 43% at 1 and 2 years, respectively). CONCLUSIONS: ABPF is a rare but highly lethal complication after TEVAR. The leading mechanism behind ABPF seems to be a continuing external compression of either the bronchial tree or left upper lobe parenchyma. In this setting, persisting or newly developing endoleak formation seems to play a crucial role. Prognosis does not differ in patients with central airway or pulmonary parenchymal fistulation. Radical bronchial or pulmonary parenchymal repair in combination with stent graft removal and aortic reconstruction seems to be the most durable treatment strategy.