43 resultados para Air pollution mortality
em Université de Lausanne, Switzerland
Resumo:
A majority of smokers and non-smokers mind tobacco smoke. Passive smoking causes death by sudden infant death, lung cancer and coronary heart disease. 3000 to 6000 persons are killed every year in France. The lack of implementation of the Evin's law published in 1991 explains why non-smokers are not given the protection they can expect. The trend of scientific knowledge and of French and international public opinions support a growing demand for a complete protection of non-smokers with a total ban of smoking in all public or working places.
Resumo:
This chapter describes the profile of the HIA, provides insight into the process and gives an example of how political decisions may be made on behalf of a concerned population through an HIA approach. [Introduction p. 284]
Resumo:
[Table des matières] 1. Contexte, objet et modalités de traitement de la saisine. - 2. Préambule. - 3. Caractérisation des parcs de stationnement couverts et de leurs activités professionnelles en France (enquête Afsset). - 4. Observations de terrain et analyse d'activités professionnelles exercées dans les parcs de stationnement couverts (étude Anact). - 5. Evaluation des risques sanitaires. - 6. Recommandations. - Bibliographie. - Annexe 1 : Lettre de saisine. - Annexe 2 : Présentation des positions divergentes. - Annexe 3 : Synthèse des déclarations publiques d'intérêts des experts par rapport au champ de la saisine. - Annexe 4 : Réglementation et recommandations institutionnelles concernant la qualité de l'air dans les parcs de stationnement couverts, et l'hygiène et la sécurité des travailleurs. - Annexe 5 : Etude de coparly sur la mesure de polluants atmosphériques dans les parcs de stationnement - Informations générales. - Annexe 6 : Dépassement des valeurs cibles Afsset" limitant les risques pour la santé des travailleurs dans les parcs de stationnement (Coparly, 2009). - Annexe 7 : Enquête Asset - Méthode d'identification du code NAF le plus adapté. - Annexe 8 : Enquête Afsset - Questionnaire d'enquête. - Annexe 9 : Enquête Afsset - Villes d'implantation des parcs inclus dans l'étude. - Annexe 10 : Rapport de l'Anact : Activité professionnelle et qualité de l'air dans les parcs couverts de stationnement. - Annexe 11 : Résultats de mesures de la campagne du LCPP utilisés pour les scénarios d'exposition. - Annexe 12 : Résultats issus de l'enquête Afsset sur les activités professionnelles exercées dans les parcs de stationnement couverts. - Annexe 13 : Concentrations ubiquitaires dans différents "micro-environnements" (Afsset, 2007). - Annexe 14 : Facteurs d'abattement entre concentrations dans le local d'exploitation et dans le parc. - Annexe 15 : Limites des valeurs toxicologiques de référence (Afsset, 2007). - Annexe 16 : Exemples de solutions pour améliorer la qualité de l'air et réduire l'exposition des travailleurs.
Resumo:
Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers' or consumers' health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/ SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.
Resumo:
In European countries and North America, people spend 80 to 90% of time inside buildings and thus breathe indoor air. In Switzerland, special attention has been devoted to the 16 stations of the national network of observation of atmospheric pollutants (NABEL). The results indicate a reduction in outdoor pollution over the last ten years. With such a decrease in pollution over these ten years the question becomes: how can we explain an increase of diseases? Indoor pollution can be the cause. Indoor contaminants that may create indoor air quality (IAQ) problems come from a variety of sources. These can include inadequate ventilation, temperature and humidity dysfunction, and volatile organic compounds (VOCs). The health effects from these contaminants are varied and can range from discomfort, irritation and respiratory diseases to cancer. Among such contaminants, environmental tobacco smoke (ETS) could be considered the most important in terms of both health effects and engineering controls of ventilation. To perform indoor pollution monitoring, several selected ETS tracers can be used including carbon monoxide (CO), carbon dioxide (CO2), respirable particles (RSP), condensate, nicotine, polycyclic aromatic hydrocarbons (PAHs), nitrosamines, etc. In this paper, some examples are presented of IAQ problems that have occurred following the renewal of buildings and energy saving concerns. Using industrial hygiene sampling techniques and focussing on selected priority pollutants used as tracers, various problems have been identified and solutions proposed. [Author]
Resumo:
Summary: Particulate air pollution is associated with increased cardiovascular risk. The induction of systemic inflammation following particle inhalation represents a plausible mechanistic pathway. The purpose of this study was to assess the associations of short-term exposure to ambient particulate matters of aerodynamic diameter less than 10 μm (PM10) with circulating inflammatory markers in 6183 adults in Lausanne, Switzerland. The results show that short-term exposure to PM10 was associated with higher levels of circulating IL-6 and TNF-α. The positive association of PM10 with markers of systemic inflammation materializes the link between air pollution and cardiovascular risk. Background: Variations in short-term exposure to particulate matters (PM) have been repeatedly associated with daily all-cause mortality. Particle-induced inflammation has been postulated to be one of the important mechanisms for increased cardiovascular risk. Experimental in-vitro, in-vivo and controlled human studies suggest that interleukin 6 (IL-6) and tumor-necrosis-factor alpha (TNF-α) could represent key mediators of the inflammatory response to PM. The associations of short-term exposure to ambient PM with circulating inflammatory markers have been inconsistent in studies including specific subgroups so far. The epidemiological evidence linking short-term exposure to ambient PM and systemic inflammation in the general population is scarce. So far, large-scale population-based studies have not explored important inflammatory markers such as IL-6, IL-1β or TNF-α. We therefore analyzed the associations between short-term exposure to ambient PM10 and circulating levels of high-sensitive CRP (hs-CRP), IL-6, IL-1β and TNF-α in the population-based CoLaus study. Objectives: To assess the associations of short-term exposure to ambient particulate matters of aerodynamic diameter less than 10 μm (PM10) with circulating inflammatory markers, including hs-CRP, IL-6, IL-1β and TNF-α, in adults aged 35 to 75 years from the general population. Methodology: All study subjects were participants to the CoLaus study (www.colaus.ch) and the baseline examination was carried out from 2003 to 2006. Overall, 6184 participants were included. For the present analysis, 6183 participants had data on at least one of the four measured circulating inflammatory markers. The monitoring data was obtained from the website of Swiss National Air Pollution Monitoring Network (NABEL). We analyzed data on PM10 as well as outside air temperature, pressure and humidity. Hourly concentrations of PM10 were collected from 1 January 2003 to 31 December 2006. Robust linear regression (PROC ROBUSTREG) was used to evaluate the relationship between cytokine inflammatory and PM10. We adjusted all analyses for age, sex, body mass index, smoking status, alcohol consumption, diabetes status, hypertension status, education levels, zip code, and statin intake. All data were adjusted for the effects of weather by including temperature, barometric pressure, and season as covariates in the adjusted models. We performed simple and multiple logistic regression analyses. Descriptive statistical analysis used the Wilcoxon rank sum test (for medians). All data analyses were performed using SAS software (version 9.2; SAS Institute Inc., Cary, NC, USA), and a two-sided significance level of 5% was used. Results: PM10 levels averaged over 24 hours were significantly and positively associated with continuous IL-6 and TNF-α levels, in the whole study population both in unadjusted and adjusted analyses. For each cytokine, there was a similar seasonal pattern, with wider confidence intervals in summer than during the other seasons, which might partly be due to the smaller number of participants examined in summer. The associations of PM10 with IL-6 and TNF-α were also found after having dichotomized these cytokines into high versus low levels, which suggests that the associations of PM10 with the continuous cytokine levels are very robust to any distributional assumption and to potential outlier values. In contrast with what we observed for continuous IL-1β levels, high PM10 levels were significantly associated with high IL-1β. PM10 was significantly associated with IL-6 and TNF-α in men, but with TNF-α only in women. However, there was no significant statistical interaction between PM10 and sex. For IL-6 and TNF-α, the associations tended to be stronger in younger people, with a significant interaction between PM10 and age groups for IL-6. PM10 was significantly associated with IL-6 and TNF-α in the healthy group and also in the "non-healthy" group, although the statistical interaction between healthy status and PM10 was not significant. Conclusion: In summary, we found significant independent positive associations of short-term exposure to PM10 with circulating levels of IL-6 and TNF-α in the adult population of Lausanne. Our findings strongly support the idea that short-term exposure to PM10 is sufficient to induce systemic inflammation on a broad scale in the general population. From a public health perspective, the reported association of elevated inflammatory cytokines with short-term exposure to PM10 in a city with relatively clean air such as Lausanne supports the importance of limiting urban air pollution levels.
Resumo:
BACKGROUND: There are limited data on the composition and smoke emissions of 'herbal' shisha products and the air quality of establishments where they are smoked. METHODS: Three studies of 'herbal' shisha were conducted: (1) samples of 'herbal' shisha products were chemically analysed; (2) 'herbal' and tobacco shisha were burned in a waterpipe smoking machine and main and sidestream smoke analysed by standard methods and (3) the air quality of six waterpipe cafes was assessed by measurement of CO, particulate and nicotine vapour content. RESULTS: We found considerable variation in heavy metal content between the three products sampled, one being particularly high in lead, chromium, nickel and arsenic. A similar pattern emerged for polycyclic aromatic hydrocarbons. Smoke emission analyses indicated that toxic byproducts produced by the combustion of 'herbal' shisha were equivalent or greater than those produced by tobacco shisha. The results of our air quality assessment demonstrated that mean PM2.5 levels and CO content were significantly higher in waterpipe establishments compared to a casino where cigarette smoking was permitted. Nicotine vapour was detected in one of the waterpipe cafes. CONCLUSIONS: 'Herbal' shisha products tested contained toxic trace metals and PAHs levels equivalent to, or in excess of, that found in cigarettes. Their mainstream and sidestream smoke emissions contained carcinogens equivalent to, or in excess of, those of tobacco products. The content of the air in the waterpipe cafes tested was potentially hazardous. These data, in aggregate, suggest that smoking 'herbal' shisha may well be dangerous to health.
Resumo:
In occupational exposure assessment of airborne contaminants, exposure levels can either be estimated through repeated measurements of the pollutant concentration in air, expert judgment or through exposure models that use information on the conditions of exposure as input. In this report, we propose an empirical hierarchical Bayesian model to unify these approaches. Prior to any measurement, the hygienist conducts an assessment to generate prior distributions of exposure determinants. Monte-Carlo samples from these distributions feed two level-2 models: a physical, two-compartment model, and a non-parametric, neural network model trained with existing exposure data. The outputs of these two models are weighted according to the expert's assessment of their relevance to yield predictive distributions of the long-term geometric mean and geometric standard deviation of the worker's exposure profile (level-1 model). Bayesian inferences are then drawn iteratively from subsequent measurements of worker exposure. Any traditional decision strategy based on a comparison with occupational exposure limits (e.g. mean exposure, exceedance strategies) can then be applied. Data on 82 workers exposed to 18 contaminants in 14 companies were used to validate the model with cross-validation techniques. A user-friendly program running the model is available upon request.
Resumo:
BACKGROUND: Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. OBJECTIVE: We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF(25-75)) associated with improved air quality. METHODS: Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter < or = 10 microm (PM(10)) to each participant's residential history 12 months before the baseline and follow-up assessments. RESULTS: The effect of diminishing PM(10) exposure on FEF(25-75) decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-microg/m(3) decline in average PM(10) exposure over an 11-year period attenuated the average annual decline in FEF(25-75) by 21.33 mL/year (95% confidence interval, 10.57-32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38-22.06) among GA genotypes, and by 6.00 mL/year (-4.54 to 16.54) among AA genotypes. CONCLUSIONS: Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults.
Resumo:
BACKGROUND: On September 11, 2001, terrorists attacked the United States. By coincidence, a North Carolina highway patrol trooper was wearing an ambulatory ECG Holter monitor at this time as part of an air pollution study. METHODS: Heart rate variability parameters were analyzed: standard deviation of normal to normal beat intervals (SDNN) and percentage of interval differences >50 ms (PNN50). RESULTS: The trooper's heart rate variability changed immediately after learning about the terrorist attacks. Heart rate increased and PNN50 decreased, while SDNN increased strongly. CONCLUSIONS: These changes suggest strong emotional sympathetic stress associated with parasympathetic withdrawal in response to the news about the terrorist attack. [Authors]