4 resultados para Age, 14C liquid scintillation counter
em Université de Lausanne, Switzerland
Resumo:
Liquid scintillation counting (LSC) is one of the most widely used methods for determining the activity of 241Pu. One of the main challenges of this counting method is the efficiency calibration of the system for the low beta energies of 241Pu (Emax = 20.8 keV). In this paper we compare the two most frequently used methods, the CIEMAT/NIST efficiency tracing (CNET) method and the experimental quench correction curve method. Both methods proved to be reliable, and agree within their uncertainties, for the expected quenching conditions of the sources.
Resumo:
A procedure was developed for determining 241Pu activity in environmental samples. This beta emitter isotope of plutonium was measured by ultra low level liquid scintillation, after several separation and purification steps that involved the use of a highly selective extraction chromatographic resin (Eichrom-TEVA). Due to the lack of reference material for 241Pu, the method was nevertheless validated using four IAEA reference sediments with information values for 241Pu. Next, the method was used to determine the 241Pu activity in alpine soils of Switzerland and France. The 241Pu/239,240Pu and 238Pu/239,240Pu activity ratios confirmed that Pu contamination in the tested alpine soils originated mainly from global fallout from nuclear weapon tests conducted in the fifties and sixties. Estimation of the date of the contamination, using the 241Pu/241Am age-dating method, further confirmed this origin. However, the 241Pu/241Am dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident is negligible.
Resumo:
A radiochemical procedure was developed for the sequential determination of Pu and Am radioisotopes in environmental samples. The radioisotope activities were then used to assess the origin and release date of the environmental plutonium. The radioanalytical procedure is based on the separation of Pu and Am on selective extraction chromatographic resins (Eichrom TEVA and DGA). Alpha sources were prepared by electrodeposition on stainless steel discs, and the alpha emitting radionuclides (238Pu, 239,240Pu and 241Am) were measured by alpha spectrometry. For the determination of the beta emitting 241Pu, the Pu alpha source was leached in hot concentrated nitric acid and the Pu fraction further purified by extraction chromatography on a small column of TEVA resin (100 μg of resin in a pipette tip). 241Pu is then measured by ultra low level liquid scintillation counting. Due to the lack of reference material for 241Pu, the proposed radiochemical method was nevertheless validated using four IAEA reference sediments with information values of 241Pu. The proposed method was then used to determine the 238Pu, 239,240Pu, 241Pu and 241Am activity concentrations in alpine soils of France and Switzerland. The soil is the primary receptor of the atmospheric radioactive fallout and, because of the strong binding interaction with soils particles, the isotopes are little fractionated. Therefore, the activity ratios 241Pu/239+240Pu and 238Pu/239,240Pu in soil samples were used to determine the origin (source) and date of the Pu contamination in the investigated alpine sites. The 241Pu/239,240Pu and 238Pu/239,240Pu activity ratios confirmed that the main origin of Pu in the alpine soils was the global fallout from the nuclear bomb tests (NBT) in the fifties and sixties. Furthermore, the 241Pu/241Am activity ratios were used to determine the age of the Pu contamination, which is also an important data for distinguishing the Pu sources. The estimation of the date of the contamination, by the 241Pu/241Am age-dating method, further confirmed the NBT as the Pu source. However, the 241Pu/241Am dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident in the studied sites is negligible.
Resumo:
A procedure was developed for determining Pu-241 activity in environmental samples. This beta emitter isotope of plutonium was measured by ultra low level liquid scintillation, after several separation and purification steps that involved the use of a highly selective extraction chromatographic resin (Eichrom-TEVA). Due to the lack of reference material for Pu-241, the method was nevertheless validated using four IAEA reference sediments with information values for Pu-241. Next, the method was used to determine the Pu-241 activity in alpine soils of Switzerland and France. The Pu-241/Pu-239,Pu-240 and Pu-238/Pu-239,Pu-240 activity ratios confirmed that Pu contamination in the tested alpine soils originated mainly from global fallout from nuclear weapon tests conducted in the fifties and sixties. Estimation of the date of the contamination, using the Pu-241/Am-241 age-dating method, further confirmed this origin. However, the Pu-241/Am-241 dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident is negligible.