30 resultados para Aerosol deposition
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: : To determine the influence of nebulizer types and nebulization modes on bronchodilator delivery in a mechanically ventilated pediatric lung model. DESIGN: : In vitro, laboratory study. SETTING: : Research laboratory of a university hospital. INTERVENTIONS: : Using albuterol as a marker, three nebulizer types (jet nebulizer, ultrasonic nebulizer, and vibrating-mesh nebulizer) were tested in three nebulization modes in a nonhumidified bench model mimicking the ventilatory pattern of a 10-kg infant. The amounts of albuterol deposited on the inspiratory filters (inhaled drug) at the end of the endotracheal tube, on the expiratory filters, and remaining in the nebulizers or in the ventilator circuit were determined. Particle size distribution of the nebulizers was also measured. MEASUREMENTS AND MAIN RESULTS: : The inhaled drug was 2.8% ± 0.5% for the jet nebulizer, 10.5% ± 2.3% for the ultrasonic nebulizer, and 5.4% ± 2.7% for the vibrating-mesh nebulizer in intermittent nebulization during the inspiratory phase (p < 0.01). The most efficient nebulizer was the vibrating-mesh nebulizer in continuous nebulization (13.3% ± 4.6%, p < 0.01). Depending on the nebulizers, a variable but important part of albuterol was observed as remaining in the nebulizers (jet and ultrasonic nebulizers), or being expired or lost in the ventilator circuit (all nebulizers). Only small particles (range 2.39-2.70 µm) reached the end of the endotracheal tube. CONCLUSIONS: : Important differences between nebulizer types and nebulization modes were seen for albuterol deposition at the end of the endotracheal tube in an in vitro pediatric ventilator-lung model. New aerosol devices, such as ultrasonic and vibrating-mesh nebulizers, were more efficient than the jet nebulizer.
Resumo:
AbstractBACKGROUND: KRAB-ZFPs (Krüppel-associated box domain-zinc finger proteins) are vertebrate-restricted transcriptional repressors encoded in the hundreds by the mouse and human genomes. They act via an essential cofactor, KAP1, which recruits effectors responsible for the formation of facultative heterochromatin. We have recently shown that KRAB/KAP1 can mediate long-range transcriptional repression through heterochromatin spreading, but also demonstrated that this process is at times countered by endogenous influences.METHOD: To investigate this issue further we used an ectopic KRAB-based repressor. This system allowed us to tether KRAB/KAP1 to hundreds of euchromatic sites within genes, and to record its impact on gene expression. We then correlated this KRAB/KAP1-mediated transcriptional effect to pre-existing genomic and chromatin structures to identify specific characteristics making a gene susceptible to repression.RESULTS: We found that genes that were susceptible to KRAB/KAP1-mediated silencing carried higher levels of repressive histone marks both at the promoter and over the transcribed region than genes that were insensitive. In parallel, we found a high enrichment in euchromatic marks within both the close and more distant environment of these genes.CONCLUSION: Together, these data indicate that high levels of gene activity in the genomic environment and the pre-deposition of repressive histone marks within a gene increase its susceptibility to KRAB/KAP1-mediated repression.
Resumo:
BACKGROUND: Advances in nebulizer design have produced both ultrasonic nebulizers and devices based on a vibrating mesh (vibrating mesh nebulizers), which are expected to enhance the efficiency of aerosol drug therapy. The aim of this study was to compare 4 different nebulizers, of 3 different types, in an in vitro model using albuterol delivery and physical characteristics as benchmarks. METHODS: The following nebulizers were tested: Sidestream Disposable jet nebulizer, Multisonic Infra Control ultrasonic nebulizer, and the Aerogen Pro and Aerogen Solo vibrating mesh nebulizers. Aerosol duration, temperature, and drug solution osmolality were measured during nebulization. Albuterol delivery was measured by a high-performance liquid chromatography system with fluorometric detection. The droplet size distribution was analyzed with a laser granulometer. RESULTS: The ultrasonic nebulizer was the fastest device based on the duration of nebulization; the jet nebulizer was the slowest. Solution temperature decreased during nebulization when the jet nebulizer and vibrating mesh nebulizers were used, but it increased with the ultrasonic nebulizer. Osmolality was stable during nebulization with the vibrating mesh nebulizers, but increased with the jet nebulizer and ultrasonic nebulizer, indicating solvent evaporation. Albuterol delivery was 1.6 and 2.3 times higher with the ultrasonic nebulizer and vibrating mesh nebulizers devices, respectively, than with the jet nebulizer. Particle size was significantly higher with the ultrasonic nebulizer. CONCLUSIONS: The in vitro model was effective for comparing nebulizer types, demonstrating important differences between nebulizer types. The new devices, both the ultrasonic nebulizers and vibrating mesh nebulizers, delivered more aerosolized drug than traditional jet nebulizers.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.
Resumo:
The in situ deposition of zinc oxide on gold nanoparticles in aqueous solution has been here successfully applied in the field of fingermark detection on various non-porous surfaces. In this article, we present the improvement of the multimetal deposition, an existing technique limited up to now to non-luminescent results, by obtaining luminescent fingermarks with very good contrast and details. This is seen as a major improvement in the field in terms of selectivity and sensitivity of detection, especially on black surfaces.
Resumo:
New products available for food creations include a wide variety of "supposed" food grade aerosol sprays. However, the gas propellants used cannot be considered as safe. The different legislations available did not rule any maximum residue limits, even though these compounds have some limits when used for other food purposes. This study shows a preliminary monitoring of propane, butane and dimethyl ether residues, in cakes and chocolate after spraying, when these gases are used as propellants in food aerosol sprays. Release kinetics of propane, butane and dimethyl ether were measured over one day with sprayed food, left at room temperature or in the fridge after spraying. The alkanes and dimethyl ether analyses were performed by headspace-gas chromatography-mass spectrometry/thermal conductivity detection, using monodeuterated propane and butane generated in situ as internal standards. According to the obtained results and regardingthe extrapolations of the maximum residue limits existing for these substances, different delays should be respected according to the storage conditions and the gas propellant to consume safely the sprayed food.
Resumo:
BACKGROUND: Plasmid DNA vaccination is a promising approach, but studies in non-human primates and humans failed to achieve protective immunity. To optimise this technology further with focus on pulmonary administration, we developed and evaluated an adjuvant-equipped DNA carrier system based on the biopolymer chitosan. In more detail, the uptake and accompanying immune response of adjuvant Pam3Cys (Toll-like receptor-1/2 agonist) decorated chitosan DNA nanoparticles (NP) were explored by using a three-dimensional (3D) cell culture model of the human epithelial barrier. Pam3Cys functionalised and non-functionalised chitosan DNA NP were sprayed by a microsprayer onto the surface of 3D cell cultures and uptake of NP by epithelial and immune cells (blood monocyte-derived dendritic cells (MDDC) and macrophages (MDM)) was visualised by confocal laser scanning microscopy. In addition, immune activation by TLR pathway was monitored by analysis of interleukin-8 and tumor necrosis factor-α secretions (ELISA). RESULTS: At first, a high uptake rate into antigen-presenting cells (MDDC: 16-17%; MDM: 68-75%) was obtained. Although no significant difference in uptake patterns was observed for Pam3Cys adjuvant functionalised and non-functionalised DNA NP, ELISA of interleukin-8 and tumor necrosis factor-α demonstrated clearly that Pam3Cys functionalisation elicited an overall higher immune response with the ranking of Pam3Cys chitosan DNA NPâeuro0/00>âeuro0/00chitosan DNA NPâeuro0/00=âeuro0/00DNA unloaded chitosan NPâeuro0/00>âeuro0/00control (culture medium). CONCLUSIONS: Chitosan-based DNA delivery enables uptake into abluminal MDDC, which are the most immune competent cells in the human lung for the induction of antigen-specific immunity. In addition, Pam3Cys adjuvant functionalisation of chitosan DNA NP enhances significantly an environment favoring recruitment of immune cells together with a Th1 associated (cellular) immune response due to elevated IL-8 and TNF-α levels. The latter renders this DNA delivery approach attractive for potential DNA vaccination against intracellular pathogens in the lung (e.g., Mycobacterium tuberculosis or influenza virus).
Resumo:
Prevention of acid mine drainage (AMD) in sulfide-containing tailings requires the identification of the geochemical processes and element pathways in the early stages of tailing deposition. However, analyses of recently deposited tailings in active tailings impoundments are scarce because mineralogical changes occur near the detection limits of many assays. This study shows that a detailed geochemical study which includes stable isotopes of water (delta H-2, delta O-18), dissolved sulfates (delta S-34, delta O-18) and hydrochernical parameter (pH, Eh, DOC, major and trace elements) from tailings samples taken at different depths in rainy and dry seasons allows the understanding of weathering (oxidation, dissolution, sorption, and desorption), water and element pathways, and mixing processes in active tailings impoundments. Fresh alkaline tailings (pH 9.2-10.2) from the Cu-Mo porphyry deposit in El Teniente, Chile had low carbonate (0.8-1.1 Wt-% CaCO3 equivalent) and sulfide concentrations (0.8-1.3 wt.%, mainly as pyrite). In the alkaline tailings water, Mo and Cu (up to 3.9 mg/L Mo and 0.016 mg/L Cu) were mobile as MoO42- and Cu (OH)(2)(0). During the flotation, tailings water reached equilibrium with gypsum (up to 738 mg/L Ca and 1765 mg/ L SO4). The delta S-34 VS. delta O-18 covariations of dissolved sulfate (2.3 to 4.5% delta S-34 and 4.1 to 6.0 % delta O-18) revealed the sulfate sources: the dissolution of primary sulfates (12.0 to 13.2%. delta S-34, 7.4 to 10.9%.delta O-18) and oxidation of primary sulfides (-6.7 to 1.7%. delta S-34). Sedimented tailings in the tailings impoundment can be divided into three layers with different water sources, element pathways, and geochemical processes. The deeper sediments (> 1 m depth) were infiltrated by catchment water, which partly replaced the original tailings water, especially during the winter season. This may have resulted in the change from alkaline to near-neutral pH and towards lower concentrations of most dissolved elements. The neutral pH and high DOC (up to 99.4 mg/L C) of the catchment water mobilized Cu (up to 0.25 mg/L) due to formation of organic Cu complexes; and Zn (up to 130 mg/L) due to dissolution of Zn oxides and desorption). At I m depth, tailings pore water obtained during the winter season was chemically and isotopically similar to fresh tailings water (pH 9.8-10.6, 26.7-35.5 mg/L Cl, 2.3-6.0 mg/L Mo). During the summer, a vadose zone evolved locally and temporarily up to 1.2 m depth. resulting in a higher concentration of dissolved solids in the pore water due to evaporation. During periodical new deposition of fresh tailings, the geochemistry of the surface layer was geochemically similar to fresh tailings. In periods without deposition, sulfide oxidation was suggested by decreasing pH (7.7-9.5), enrichment of MoO42- and SO42-, and changes in the isotopic composition of dissolved sulfates. Further enrichment for Na, K, Cl, SO4, Mg, Cu, and Mo (up to 23.8 mg/L Mo) resulted from capillary transport towards the surface followed by evaporation and the precipitation of highly soluble efflorescent salts (e.g., mirabilite, syngenite) at the tailing surface during summer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Following the introduction of single-metal deposition (SMD), a simplified fingermark detection technique based on multimetal deposition, optimization studies were conducted. The different parameters of the original formula were tested and the results were evaluated based on the contrast and overall aspect of the enhanced fingermarks. The new formula for SMD was found based on the most optimized parameters. Interestingly, it was found that important variations from the base parameters did not significantly affect the outcome of the enhancement, thus demonstrating that SMD is a very robust technique. Finally, a comparison of the optimized SMD with multi-metal deposition (MMD) was carried out on different surfaces. It was demonstrated that SMD produces comparable results to MMD, thus validating the technique.
Resumo:
The aim of this study was to assess the frequency and the outcome of patients suffering from rheumatoid arthritis in which calcium pyrophosphate dihydrate (CPPD) crystal deposits were found to coexist in synovial fluid analysis. Such association was more frequent than previously believed with CPPD crystals found in 25.8% of 93 patients with rheumatoid arthritis. As a group, a trend toward a worse outcome was suggested by more frequent prostheses of the lower limb.
Resumo:
OBJECTIVE: To test the hypothesis that calcium pyrophosphate dihydrate (CPPD) deposition disease is a risk factor for neck pain. METHODS: A prevalent case-control study was conducted to assess cervical calcifications and neck pain between patients with and without known peripheral CPPD deposition disease. CPPD cases were included if diagnosed with CPPD deposition disease of peripheral joints, and excluded if their chief complaint was neck pain. Controls were randomly selected among consecutive patients, hospitalized for conditions unrelated to CPPD deposition disease or neck pain, and matched to CPPD cases by age and sex. Cervical calcifications were assessed by lateral cervical radiographs and computed tomography scans of the upper cervical spine; neck pain and cervical function were appraised by a validated questionnaire. RESULTS: Cervical calcifications were found in 24 out of 35 patients (69%) in the CPPD group compared to 4 out of 35 patients (11%) in the control group (p < 0.001). Patients with CPPD deposition disease reported significantly more neck pain and discomfort than controls (p < 0.001), and were 5 times more likely to report any neck pain (odds ratio 5.5; 95% confidence interval: 1.9, 21.9). Among male patients, more extensive cervical calcified deposits correlated with more severe neck pain (rs = 0.58, p = 0.03). CONCLUSION: These results suggest that CPPD deposition disease frequently involves the cervical spine and may be associated with the development of neck pain.
Resumo:
BACKGROUND: High sugar and fat intakes are known to increase intrahepatocellular lipids (IHCLs) and to cause insulin resistance. High protein intake may facilitate weight loss and improve glucose homeostasis in insulin-resistant patients, but its effects on IHCLs remain unknown. OBJECTIVE: The aim was to assess the effect of high protein intake on high-fat diet-induced IHCL accumulation and insulin sensitivity in healthy young men. DESIGN: Ten volunteers were studied in a crossover design after 4 d of either a hypercaloric high-fat (HF) diet; a hypercaloric high-fat, high-protein (HFHP) diet; or a control, isocaloric (control) diet. IHCLs were measured by (1)H-magnetic resonance spectroscopy, fasting metabolism was measured by indirect calorimetry, insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and plasma concentrations were measured by enzyme-linked immunosorbent assay and gas chromatography-mass spectrometry; expression of key lipogenic genes was assessed in subcutaneous adipose tissue biopsy specimens. RESULTS: The HF diet increased IHCLs by 90 +/- 26% and plasma tissue-type plasminogen activator inhibitor-1 (tPAI-1) by 54 +/- 11% (P < 0.02 for both) and inhibited plasma free fatty acids by 26 +/- 11% and beta-hydroxybutyrate by 61 +/- 27% (P < 0.05 for both). The HFHP diet blunted the increase in IHCLs and normalized plasma beta-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not altered, whereas the expression of sterol regulatory element-binding protein-1c and key lipogenic genes increased with the HF and HFHP diets (P < 0.02). Bile acid concentrations remained unchanged after the HF diet but increased by 50 +/- 24% after the HFHP diet (P = 0.14). CONCLUSIONS: Protein intake significantly blunts the effects of an HF diet on IHCLs and tPAI-1 through effects presumably exerted at the level of the liver. Protein-induced increases in bile acid concentrations may be involved. This trial was registered at www.clinicaltrials.gov as NCT00523562.
Resumo:
The use of urinary hexane diamine (HDA) as a biomarker to assess human respiratory exposure to hexamethylene diisocyanate (HDI) aerosol was evaluated. Twenty-three auto body shop workers were exposed to HDI biuret aerosol for two hours using a closed exposure apparatus. HDI exposures were quantified using both a direct-reading instrument and a treated-filter method. Urine samples collected at baseline, immediately post exposure, and every four to five hours for up to 20 hours were analyzed for HDA using gas chromatography and mass spectrometry. Mean urinary HDA (microg/g creatinine) sharply increased from the baseline value of 0.7 to 18.1 immediately post exposure and decreased rapidly to 4.7, 1.9 and 1.1, respectively, at 4, 9, and 18 hours post exposure. Considerable individual variability was found. Urinary HDA can assess acute respiratory exposure to HDI aerosol, but may have limited use as a biomarker of exposure in the workplace. [Authors]
Resumo:
The precise localization of extracellular matrix and cell wall components is of critical importance for multicellular organisms. Lignin is a major cell wall modification that often forms intricate subcellular patterns that are central to cellular function. Yet the mechanisms of lignin polymerization and the subcellular precision of its formation remain enigmatic. Here, we show that the Casparian strip, a lignin-based, paracellular diffusion barrier in plants, forms as a precise, median ring by the concerted action of a specific, localized NADPH oxidase, brought into proximity of localized peroxidases through the action of Casparian strip domain proteins (CASPs). Our findings in Arabidopsis provide a simple mechanistic model of how plant cells regulate lignin formation with subcellular precision. We speculate that scaffolding of NADPH oxidases to the downstream targets of the reactive oxygen species (ROS) that they produce might be a widespread mechanism to ensure specificity and subcellular precision of ROS action within the extracellular matrix.