9 resultados para Aerodynamic Equations

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Little information is available on the validity of simple and indirect body-composition methods in non-Western populations. Equations for predicting body composition are population-specific, and body composition differs between blacks and whites. OBJECTIVE: We tested the hypothesis that the validity of equations for predicting total body water (TBW) from bioelectrical impedance analysis measurements is likely to depend on the racial background of the group from which the equations were derived. DESIGN: The hypothesis was tested by comparing, in 36 African women, TBW values measured by deuterium dilution with those predicted by 23 equations developed in white, African American, or African subjects. These cross-validations in our African sample were also compared, whenever possible, with results from other studies in black subjects. RESULTS: Errors in predicting TBW showed acceptable values (1.3-1.9 kg) in all cases, whereas a large range of bias (0.2-6.1 kg) was observed independently of the ethnic origin of the sample from which the equations were derived. Three equations (2 from whites and 1 from blacks) showed nonsignificant bias and could be used in Africans. In all other cases, we observed either an overestimation or underestimation of TBW with variable bias values, regardless of racial background, yielding no clear trend for validity as a function of ethnic origin. CONCLUSIONS: The findings of this cross-validation study emphasize the need for further fundamental research to explore the causes of the poor validity of TBW prediction equations across populations rather than the need to develop new prediction equations for use in Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Aerodynamic drag plays an important role in performance for athletes practicing sports that involve high-velocity motions. In giant slalom, the skier is continuously changing his/her body posture, and this affects the energy dissipated in aerodynamic drag. It is therefore important to quantify this energy to understand the dynamic behavior of the skier. The aims of this study were to model the aerodynamic drag of alpine skiers in giant slalom simulated conditions and to apply these models in a field experiment to estimate energy dissipated through aerodynamic drag. METHODS: The aerodynamic characteristics of 15 recreational male and female skiers were measured in a wind tunnel while holding nine different skiing-specific postures. The drag and the frontal area were recorded simultaneously for each posture. Four generalized and two individualized models of the drag coefficient were built, using different sets of parameters. These models were subsequently applied in a field study designed to compare the aerodynamic energy losses between a dynamic and a compact skiing technique. RESULTS: The generalized models estimated aerodynamic drag with an accuracy of between 11.00% and 14.28%, and the individualized models estimated aerodynamic drag with an accuracy between 4.52% and 5.30%. The individualized model used for the field study showed that using a dynamic technique led to 10% more aerodynamic drag energy loss than using a compact technique. DISCUSSION: The individualized models were capable of discriminating different techniques performed by advanced skiers and seemed more accurate than the generalized models. The models presented here offer a simple yet accurate method to estimate the aerodynamic drag acting upon alpine skiers while rapidly moving through the range of positions typical to turning technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Spirometry reference values are important for the interpretation of spirometry results. Reference values should be updated regularly, derived from a population as similar to the population for which they are to be used and span across all ages. Such spirometry reference equations are currently lacking for central European populations. OBJECTIVE: To develop spirometry reference equations for central European populations between 8 and 90 years of age. MATERIALS: We used data collected between January 1993 and December 2010 from a central European population. The data was modelled using "Generalized Additive Models for Location, Scale and Shape" (GAMLSS). RESULTS: The spirometry reference equations were derived from 118'891 individuals consisting of 60'624 (51%) females and 58'267 (49%) males. Altogether, there were 18'211 (15.3%) children under the age of 18 years. CONCLUSION: We developed spirometry reference equations for a central European population between 8 and 90 years of age that can be implemented in a wide range of clinical settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Growth is a central process in paediatrics. Weight and height evaluation are therefore routine exams for every child but in some situation, particularly inflammatory bowel disease (IBD), a wider evaluation of nutritional status needs to be performed. The assessment of body composition is essential in order to maintain acceptable growth using the following techniques: Dual-energy X-ray absorptiometry (DEXA), bio-impedance-analysis (BIA) and anthropometric measurements (skinfold thickness skin), the latter being most easily available and most cost effective. Objectives: To assess the accuracy of skinfold equations in estimating percentage body fat (%BF) in children with inflammatory bowel disease (IBD), compared with assessment of body fat dual energy X-ray absorptiometry (DEXA). Methods: Twenty-one patients (11 females, 10 males; mean age: 14.3 years, range 12 - 16 years) with IBD (Crohn's disease n = 15, ulcerative colitis n = 6)). Estimated%BF was computed using 6 established equations based on the triceps, biceps, subscapular and suprailiac skinfolds (Deurenberg, Weststrate, Slaughter, Durnin & Rahaman, Johnston, Brook) and compared to DEXA. Concordance analysis was performed using Lin's concordance correlation and the Bland-Altman limits of agreement method. Results: Durnin & Rahaman's equation shows a higher Lin's concordance coefficient with a small difference amongst raw values for skinfolds and DEXA compared to the other equations. Correlation coefficient between mean and difference is close to zero with a non-significant Bradley-Blackwood test. Conclusion: Body composition in paediatric IBD patients using the Durnin & Rahaman skinfold-equation adequately reflects values obtained by DEXA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The aim of the study was to statistically model the relative increased risk of cardiovascular disease (CVD) per year older in Data collection on Adverse events of anti-HIV Drugs (D:A:D) and to compare this with the relative increased risk of CVD per year older in general population risk equations. METHODS: We analysed three endpoints: myocardial infarction (MI), coronary heart disease (CHD: MI or invasive coronary procedure) and CVD (CHD or stroke). We fitted a number of parametric age effects, adjusting for known risk factors and antiretroviral therapy (ART) use. The best-fitting age effect was determined using the Akaike information criterion. We compared the ageing effect from D:A:D with that from the general population risk equations: the Framingham Heart Study, CUORE and ASSIGN risk scores. RESULTS: A total of 24 323 men were included in analyses. Crude MI, CHD and CVD event rates per 1000 person-years increased from 2.29, 3.11 and 3.65 in those aged 40-45 years to 6.53, 11.91 and 15.89 in those aged 60-65 years, respectively. The best-fitting models included inverse age for MI and age + age(2) for CHD and CVD. In D:A:D there was a slowly accelerating increased risk of CHD and CVD per year older, which appeared to be only modest yet was consistently raised compared with the risk in the general population. The relative risk of MI with age was not different between D:A:D and the general population. CONCLUSIONS: We found only limited evidence of accelerating increased risk of CVD with age in D:A:D compared with the general population. The absolute risk of CVD associated with HIV infection remains uncertain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stability of airborne nanoparticle agglomerates is important for occupational exposure and risk assessment in determining particle size distribution of nanomaterials. In this study, we developed an integrated method to test the stability of aerosols created using different types of nanomaterials. An aerosolization method, that resembles an industrial fluidized bed process, was used to aerosolize dry nanopowders. We produced aerosols with stable particle number concentrations and size distributions, which was important for the characterization of the aerosols' properties. Next, in order to test their potential for deagglomeration, a critical orifice was used to apply a range of shear forces to them. The mean particle size of tested aerosols became smaller, whereas the total number of particles generated grew. The fraction of particles in the lower size range increased, and the fraction in the upper size range decreased. The reproducibility and repeatability of the results were good. Transmission electron microscopy imaging showed that most of the nanoparticles were still agglomerated after passing through the orifice. However, primary particle geometry was very different. These results are encouraging for the use of our system for routine tests of the deagglomeration potential of nanomaterials. Furthermore, the particle concentrations and small quantities of raw materials used suggested that our system might also be able to serve as an alternative method to test dustiness in existing processes.