6 resultados para Adjustable Shoulder Belt Anchors.
em Université de Lausanne, Switzerland
Resumo:
White micas in carbonate-rich tectonites and a few other rock types of large thrusts in the Swiss Helvetic fold-and-thrust belt have been analyzed by Ar-40/Ar-39 and Rb/Sr techniques to better constrain the timing of Alpine deformation for this region. Incremental Ar-40/Ar-39 heating experiments of 25 weakly metamorphosed (anchizone to low greenschist) samples yield plateau and staircase spectra. We interpret most of the staircase release spectra result from variable mixtures of syntectonic (neoformed) and detrital micas. The range in dates obtained within individual spectra depends primarily on the duration of mica nucleation and growth, and relative proportions of neoformed and detrital mica. Rb/Sr analyses of 12 samples yield dates of ca. 10-39 Ma (excluding one anomalously young sample). These dates are slightly younger than the Ar-40/Ar-39 total gas dates obtained for the same samples. The Rb/ Sr dates were calculated using initial Sr-87/Sr-86 ratios obtained from the carbonate-dominated host rocks, which are higher than normal Mesozoic carbonate values due to exchange with fluids of higher Sr-87/Sr-86 ratios (and lower O-18/O-16 ratios). Model dates calculated using Sr-87/Sr-86 values typical of Mesozoic marine carbonates more closely approximate the Ar-40/Ar-39 total gas dates for most of the samples. The similarities of Rb/Sr and Ar-40/Ar-39 total gas dates are consistent with limited amounts of detrital mica in the samples. The delta(18)O values range from 24-15%. (VSMOW) for 2-6 mum micas and 27-16parts per thousand for the carbonate host rocks. The carbonate values are significantly lower than their protolith values due to localized fluid-rock interaction and fluid flow along most thrust surfaces. Although most calcite-mica pairs are not in oxygen isotope equilibrium at temperatures of ca. 200-400 degreesC, their isotopic fractionations are indicative of either 1) partial exchange between the minerals and a common external fluid, or 2) growth or isotopic exchange of the mica with the carbonate after the carbonate had isotopically exchanged with an external fluid. The geological significance of these results is not easily or uniquely determined, and exemplifies the difficulties inherent in dating very fine-grained micas of highly deformed tectonites in low-grade metamorphic terranes. Two generalizations can be made regarding the dates obtained from the Helvetic thrusts: 1) samples from the two highest thrusts (Mt. Gond and Sublage) have all of their Ar-40/Ar-39 steps above 20 Ma, and 2) most samples from the deepest Helvetic thrusts have steps (often accounting for more than 80% of Ar-39 release) between 15 and 25 Ma. These dates are consistent with the order of thrusting in the foreland-imbricating system and increase proportions of neoformed to detrital mica in the more metamorphosed hinterland and deeply buried portions of the nappe pile. Individual thrusts accommodated the majority of their displacement during their initial incorporation into the foreland-imbricating system, and some thrusts remained active or were reactivated down to 15 Ma.
Resumo:
BACKGROUND: The WOSI (Western Ontario Shoulder Instability Index) is a self-administered quality of life questionnaire designed to be used as a primary outcome measure in clinical trials on shoulder instability, as well as to measure the effect of an intervention on any particular patient. It is validated and is reliable and sensitive. As it is designed to measure subjective outcome, it is important that translation should be methodologically rigorous, as it is subject to both linguistic and cultural interpretation. OBJECTIVE: To produce a French language version of the WOSI that is culturally adapted to both European and North American French-speaking populations. MATERIALS AND METHODS: A validated protocol was used to create a French language WOSI questionnaire (WOSI-Fr) that would be culturally acceptable for both European and North American French-speaking populations. Reliability and responsiveness analyses were carried out, and the WOSI-Fr was compared to the F-QuickDASH-D/S (Disability of the Arm, Shoulder and Hand-French translation), and Walch-Duplay scores. RESULTS: A French language version of the WOSI (WOSI-Fr) was accepted by a multinational committee. The WOSI-Fr was then validated using a total of 144 native French-speaking subjects from Canada and Switzerland. Comparison of results on two WOSI-Fr questionnaires completed at a mean interval of 16 days showed that the WOSI-Fr had strong reliability, with a Pearson and interclass correlation of r=0.85 (P=0.01) and ICC=0.84 [95% CI=0.78-0.88]. Responsiveness, at a mean 378.9 days after surgical intervention, showed strong correlation with that of the F-QuickDASH-D/S, with r=0.67 (P<0.01). Moreover, a standardized response means analysis to calculate effect size for both the WOSI-Fr and the F-QuickDASH-D/S showed that the WOSI-Fr had a significantly greater ability to detect change (SRM 1.55 versus 0.87 for the WOSI-Fr and F-QuickDASH-D/S respectively, P<0.01). The WOSI-Fr showed fair correlation with the Walch-Duplay. DISCUSSION: A French-language translation of the WOSI questionnaire was created and validated for use in both Canadian and Swiss French-speaking populations. This questionnaire will facilitate outcome assessment in French-speaking settings, collaboration in multinational studies and comparison between studies performed in different countries. TYPE OF STUDY: Multicenter cohort study. LEVEL OF EVIDENCE: II.
Resumo:
BACKGROUND: Adaptations to Internal (IR) and external (ER) rotator shoulder muscles improving overhead throwing kinematics could lead to muscular strength imbalances and be considered an intrinsic risk factor for shoulder injury, as well as modified shoulder range of motion (RoM). OBJECTIVE: To establish profiles of internal and external rotation RoM and isokinetic IR and ER strength in adolescent- and national-level javelin throwers. METHODS: Fourteen healthy subjects were included in this preliminary cross-sectional study, 7 javelin throwers (JTG) and 7 nonathletes (CG). Passive internal and external rotation RoM were measured at 90 degrees of shoulder abduction. Isokinetic strength of dominant and non-dominant IR and ER was evaluated during concentric (60, 120 and 240 degrees/s) and eccentric (60 degrees/s) contractions by Con-Trex (R) dynamometer with the subject in a seated position with 45 degrees of shoulder abduction in the scapular plane. RESULTS: We reported significantly lower internal rotation and significantly higher external rotation RoM in JTG than in CG. Concentric and eccentric IR and ER strength were significantly higher for the dominant shoulder side in JTG (P < 0.05), without significant differences in ER/IR ratios. CONCLUSIONS: The main finding of this preliminary study confirmed static and dynamic shoulder stabilizer adaptations due to javelin throw practice in a population of adolescent- and national-level javelin throwers.
Resumo:
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.
Resumo:
PURPOSE: We report on the in vivo testing of a novel noninvasively adjustable glaucoma drainage device (AGDD), which features an adjustable outflow resistance, and assess the safety and efficiency of this implant. METHODS: Under general anesthesia, the AGDD was implanted on seven white New Zealand rabbits for a duration of 4 months under a scleral flap in a way analogous to the Ex-PRESS device and set in an operationally closed position. The IOP was measured on a regular basis on the operated and control eyes using a rebound tonometer. Once a month the AGDD was adjusted noninvasively from its fully closed to its fully open position and the resulting pressure drop was measured. The contralateral eye was not operated and served as control. After euthanization, the eyes were collected for histology evaluation. RESULTS: The mean preoperative IOP was 11.1 ± 2.4 mm Hg. The IOP was significantly lower for the operated eye (6.8 ± 2 mm Hg) compared to the nonoperated eye (13.1 ± 1.6 mm Hg) during the first 8 days after surgery. When opening the AGDD from its fully closed to fully open position, the IOP dropped significantly from 11.2 ± 2.9 to 4.8 ± 0.9 mm Hg (P < 0.05). CONCLUSIONS: Implanting the AGDD is a safe and uncomplicated surgical procedure. The fluidic resistance was noninvasively adjustable during the postoperative period with the AGDD between its fully closed and fully open positions.