1 resultado para Active Power Losses
em Université de Lausanne, Switzerland
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (21)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (3)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (41)
- CentAUR: Central Archive University of Reading - UK (13)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (27)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (7)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Helda - Digital Repository of University of Helsinki (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (41)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (12)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (3)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (52)
- Queensland University of Technology - ePrints Archive (353)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (167)
- Repositorio Institucional Universidad de Medellín (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (46)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universita di Parma (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (9)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.