47 resultados para Action Potential
em Université de Lausanne, Switzerland
Resumo:
SUMMARY Acid-sensing ion channels (ASICs) are non-voltage gated sodium channels. They are activated by rapid extracellular acidification and generate an inactivating inward current. Four ASIC genes have been cloned: ASIC1, 2, 3 and 4, with variants a and b for ASIC1and AS1C2. ASICs are expressed in neurons of the central (CNS) and peripheral nervous system (PNS). In the CNS, ASICs have a role in learning, memory, as well as in neuronal death in ischemia. In the PNS, ASICs are involved in the perception of acid-induced pain, as well as in mechanoperception. In one part of my thesis project, we addressed the question of the mechanism of regulation of ASIC1 a by the serine protease trypsin at the molecular level. Trypsin modifies the function of ASIC1 a but not of ASIC1b. In order to identify the channel region responsible for this effect, we created chimeras between ASIC1 a and 1b. Subsequently, to identify the exact trypsin target(s), we mutated predicted trypsin sites in the region identified by the chimera. In the second part of a project, we investigated the role of ASICs at the cellular level, in neuronal signaling. Using the whole-cell patch clamp in hippocampal neuronal culture, we studied the potential involvement of ASICs in action potential (AP) generation. In the first part of the thesis work, we showed that trypsin modifies ASIC1a function: it shifts the pH activation and the steady-state inactivation curve towards more acidic values and accelerates the time course of the channel recovery from inactivation. We also showed that trypsin cleaves ASIC1a and that the functional effect and a channel cleavage correlate. In the inactivated state, channels cannot be modified by trypsin. Cleavage occurs in a channel region that is also important for inactivation of all ASICs; a part of this region is critical for the inhibition of ASIC1 a by the spider toxin Psalmotoxin1. In the second part of the thesis work, we showed that ASIC activity can modulate AP generation. ASIC activity by itself can induce trains of APs. In situations in which this activity by itself is not sufficient to induce APs, it can contribute to AP generation. During high neuronal activity, ASIC activity can block already existing trains of APs. In conclusion, depending on the activity of neuron in a particular moment, ASICs can differently modulate AP generation; they can induce, facilitate or inhibit APs. We also showed that trypsin changes the capability of ASICs to modulate AP generation by shifting the pH dependence to more acidic values, which adapts channel gating to pH conditions which may occur in pathological conditions such as ischemia. Our finding that trypsin modifies ASIC1 a function identifies a novel pharmacological tool, and proposes a mechanism of ASIC1a regulation that may have a physiological importance. The identification of the exact site of trypsin action gives insight to the molecular mechanisms of ASIC regulation. This work proposes a role in modulation of AP generation for ASICs in the CNS. RESUME Les canaux ASIC sont les canaux ioniques activés par l'acidification rapide extracellulaire. Activés, ils génèrent un courant entrant qui inactive en présence de stimulus acide. Quatre gènes ASIC ont été clonés, ASIC1, 2, 3 et 4, avec les variants a et b pour ASIC1 et 2. Les ASICs sont exprimés dans les neurones du système nerveux central (SNC) et périphérique (SNP). Dans le SNC, les ASIC ont un rôle dans le mémoire, apprentissage et la mort neuronale dans t'ischémie. Dans le SNP, ils ont un rôle dans la perception de la douleur et méchanosensation. Dans une partie de mon projet de thèse, nous avons étudié les mécanismes de la régulation d'ASIC1a par la sérine-protéase trypsine au niveau moléculaire. La trypsine modifie la fonction d'ASIC1a et pas ASIC1b. Nous avons créé les chimères entre ASIC1 a et 1 b, afin d'identifier la région du canal responsable pour l'effet. Pour identifier le(s) site(s) exactes de l'action de la trypsine, nous avons muté les sites potentiels de la trypsine dans la région identifiée par les chimères. Dans la deuxième partie du projet, nous avons étudié le rôle des ASICs au niveau cellulaire. En utilisant la technique du patch clamp dans les cultures des neurones de l'hippocampe, nous avons étudié l'implication des ASICs dans la génération des potentiels d'action (PA). Nous avons montré que la trypsine agit sur le canal ASIC1a ; elle décale l'activation et « steady-state » inactivation vers les valeurs plus acides, et elle raccourcit le temps du « recovery » du canal. La trypsine coupe ASIC1a sur le résidu K145 et l'effet fonctionnel et la coupure corrèlent. Nous avons identifié la région du canal responsable pour l'inactivation de tous les ASICs ; une partie de cette région est responsable pour ['inhibition d'ASIC1 a par la Psalmotoxinel . Nous avons montré que les ASICs peuvent moduler la génération des PAs. L'activité des ASICs peut induire les trains des PAs. Quand l'activité des ASICs n'est pas suffisante pour induire le PA, elle peut contribuer à sa génération. Pendant l'activité neuronale forte, l'activité des ASICs peut bloquer les trains des PAs qui existent déjà. En conclusion, dépendant de l'activité neuronale, les ASICs peuvent moduler la génération des PAs différemment ; ils peuvent induire, faciliter ou inhiber les PAs. La trypsine change la capacité des ASICs de moduler les PAs. Après l'action de la trypsine, les ASICs peuvent moduler la génération des PAs dans les conditions légèrement acides, suivies par les fluctuations du pH acide, qui peuvent exister dans l'ischémie. Le fait que la trypsine agit sur ASIC1a définit l'outil pharmacologique et propose le mécanisme de la régulation d'ASICI a qui pourrait avoir l'importance physiologique. L'identification du site de l'action de la trypsine éclaircit les mécanismes moléculaires de la régulation des ASICs. Cette étude propose un rôle des ASICs dans la modulation de la génération des PAs. Résumé pour le public large Les neurones sont les cellules de système nerveux dont la fonction est la signalisation. Comme toutes les autres cellules, les neurones ont une membrane qui sépare l'intérieur du milieu extérieur. Cette membrane est imperméable pour des particules chargées (ions). Dans cette membrane existent les protéines spécifiques, « canaux », qui permettent le transport des ions d'un côté de la membrane à l'autre, comme réponse aux stimuli différents. Ce transport des ions à travers la membrane génère un courant, qu'on peut mesurer. Ce courant est la base de la communication entre les neurones, ou, ce qu'on appelle la signalisation neuronale. Quand ce courant est suffisamment grand, il permet la génération du potentiel d'action, qui est le message principal de communication neuronale. Les canaux ASIC (acid-sensing ion channel), que nous étudions dans le laboratoire, sont activés par les acides. Les acides sont relâchés dans beaucoup de situations dans le système nerveux. Les ASIC ont été découverts récemment (en 1996), et nous ne connaissons pas encore très bien toutes les fonctions de ces canaux. Nous savons qu'ils ont un rôle dans le mémoire, apprentissage, la sensation de la douleur et l'infarctus cérébral. Dans la première partie de ce projet de thèse, nous avons voulu mieux comprendre comment fonctionnent ces canaux. Pour faire ça, nous avons étudié la régulation des ASICs par une protéine, trypsine, qui coupe le canal ASIC. Nous avons étudié ou exactement la trypsine coupe le canal et quels effets ça produit sur la fonction du canal. Dans la deuxième partie du projet de thèse, nous avons voulu mieux connaître comment le canal fonctionne au niveau de la cellule, comment il interagit avec les autres canaux et si il a un rôle dans la génération des potentiels d'action. Nous avons pu montrer que la trypsine change la fonction du canal, ce qui lui permet de fonctionner différemment. Nous avons aussi déterminé ou exactement ta trypsine coupe le canal. Au niveau de la cellule, nous avons montré que les ASIC peuvent moduler la génération des potentiels d'action, étant, dépendant de l'activité du neurone, soit activateurs, soit inhibiteurs. La trypsine est une molécule qui peut être libérée dans le système nerveux pendant certaines conditions, comme l'infarctus cérébral. A cause de ça, les connaissances que la trypsine agit sur le anal ASIC pourraient être important physiologiquement. La connaissance de l'endroit exacte ou la trypsine coupe le canal nous aide à mieux comprendre la relation structure-fonction du canal. La modulation de la génération des potentiels d'actions par les ASIC indique que ces canaux peuvent avoir un rôle important dans la signalisation neuronale.
Resumo:
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na(+) and K(+) channels, providing the conditions necessary for the transduction of local pH changes into electrical signals.
Resumo:
Primary sensory cortex discriminates incoming sensory information and generates multiple processing streams toward other cortical areas. However, the underlying cellular mechanisms remain unknown. Here, by making whole-cell recordings in primary somatosensory barrel cortex (S1) of behaving mice, we show that S1 neurons projecting to primary motor cortex (M1) and those projecting to secondary somatosensory cortex (S2) have distinct intrinsic membrane properties and exhibit markedly different membrane potential dynamics during behavior. Passive tactile stimulation evoked faster and larger postsynaptic potentials (PSPs) in M1-projecting neurons, rapidly driving phasic action potential firing, well-suited for stimulus detection. Repetitive active touch evoked strongly depressing PSPs and only transient firing in M1-projecting neurons. In contrast, PSP summation allowed S2-projecting neurons to robustly signal sensory information accumulated during repetitive touch, useful for encoding object features. Thus, target-specific transformation of sensory-evoked synaptic potentials by S1 projection neurons generates functionally distinct output signals for sensorimotor coordination and sensory perception.
Resumo:
It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.
Resumo:
The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.
Resumo:
Myotonic dystrophy Type 1 (DM-1) is caused by abnormal expansion of a (CTG) repeat located in the DM protein kinase gene. Respiratory problems have long been recognized to be a major feature of this disorder. Because respiratory failure can be associated with dysfunction of phrenic nerves and diaphragm muscle, we examined the diaphragm and respiratory neural network in transgenic mice carrying the human genomic DM-1 region with expanded repeats of more than 300 CTG, a valid model of the human disease. Morphologic and morphometric analyses revealed distal denervation of diaphragm neuromuscular junctions in DM-1 transgenic mice indicated by a decrease in the size and shape complexity of end-plates and a reduction in the concentration of acetyl choline receptors on the postsynaptic membrane. More importantly, there was a significant reduction in numbers of unmyelinated, but not of myelinated, fibers in DM-1 phrenic nerves; no morphologic alternations of the nerves or loss of neuronal cells were detected in medullary respiratory centers or cervical phrenic motor neurons. Because neuromuscular junctions are involved in action potential transmission and the afferent phrenic unmyelinated fibers control the inspiratory activity, our results suggest that the respiratory impairment associated with DM-1 may be partially due to pathologic alterations in neuromuscular junctions and phrenic nerves.
Resumo:
Diabetes mellitus (DM) is a major cause of peripheral neuropathy. More than 220 million people worldwide suffer from type 2 DM, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy. While of significant medical importance, the pathophysiological changes present in DPN are still poorly understood. To get more insight into DPN associated with type 2 DM, we decided to use the rodent model of this form of diabetes, the db/db mice. During the in-vivo conduction velocity studies on these animals, we observed the presence of multiple spiking followed by a single stimulation. This prompted us to evaluate the excitability properties of db/db peripheral nerves. Ex-vivo electrophysiological evaluation revealed a significant increase in the excitability of db/db sciatic nerves. While the shape and kinetics of the compound action potential of db/db nerves were the same as for control nerves, we observed an increase in the after-hyperpolarization phase (AHP) under diabetic conditions. Using pharmacological inhibitors we demonstrated that both the peripheral nerve hyperexcitability (PNH) and the increased AHP were mostly mediated by the decreased activity of Kv1-channels. Importantly, we corroborated these data at the molecular level. We observed a strong reduction of Kv1.2 channel presence in the juxtaparanodal regions of teased fibers in db/db mice as compared to control mice. Quantification of the amount of both Kv1.2 isoforms in DRG neurons and in the endoneurial compartment of peripheral nerve by Western blotting revealed that less mature Kv1.2 was integrated into the axonal membranes at the juxtaparanodes. Our observation that peripheral nerve hyperexcitability present in db/db mice is at least in part a consequence of changes in potassium channel distribution suggests that the same mechanism also mediates PNH in diabetic patients. ∗Current address: Department of Physiology, UCSF, San Francisco, CA, USA.
Resumo:
Congenital myasthenic syndromes (CMS) are clinically and genetically heterogeneous inherited disorders characterized by impaired neuromuscular transmission. Mutations in the acetylcholinesterase (AChE) collagenlike tail subunit gene (ColQ) cause recessive forms of synaptic CMS with end plate AChE deficiency. We report the time course of clinical manifestations in 15 COLQ-mutated patients followed from 1987 to 2010. All patients suffered from a muscle weakness with onset at birth or in childhood. Ocular and bulbar signs were found in 60% of the patients and delayed pupillary light response in 20% of our patients. EMG study demonstrated a decrement on repetitive nerve stimulation and repetitive compound muscle action potential in all patients. Clinical symptoms strongly fluctuated daily, weekly, monthly or even yearly. Severe relapses were characterized by a general motor weakness associated with pain which resolved spontaneously after a few months whereas the relapses with these symptoms and bulbar signs could last up to several years. Genetic analyses identified 16 different mutations including 9 novel ones. There was no genotype-phenotype correlation. Our study confirms the predominance of oculobulbar signs and the frequency of respiratory distress in COLQrelated CMS. At the end of the follow up of 23 years, interesting findings were (i) the spontaneous reversibility of severe relapses, some of them lasting for up to 5 years (ii) the good prognosis of COLQ-related CMS, since at the end of the follow-up 80% of patients were ambulant and 87% of patients had no respiratory trouble (iii) the efficacy of Ephedrine and, to a lesser extend, of 3-4 DAP. The triggering factors of relapses were esterase inhibitors, effort, puberty, pregnancy and delivery highlighting the importance of hormonal factors in CMS. In conclusion, patients diagnosed with unknown congenital myopathy should undergo an electrophysiological study of neuromuscular junction to identify ColQ-related CMS.
Resumo:
Introduction: Intraoperative EMG based neurophysiological monitoring is increasingly used to assist pedicle screw insertion. We carried out a study comparing the final screw position in the pedicle measured on CT images in relation to its corresponding intraoperative muscle compound action potential (CMAP) values. Material and methods: A total of 189 screws were inserted in thoracolumbar spines of 31 patients during instrumented fusion under EMG control. An observer, blinded to the CMAP value, assessed the horizontal and vertical 'screw edge to pedicle edge' distance perpendicular to the longitudinal axis of the screw on reformatted CT reconstructions using OsiriX software. These distances were analysed with their corresponding CMAP values. Data from 62 thoracic and 127 lumbar screws were processed separately. Interobserver reliability of distance measurements was assessed. Results: No patient suffered neurological injury secondary to screw insertion. Distance measurements were reliable (paired t-test, P = 0.13/0.98 horizontal/vertical). Two screws had their position altered due to low CMAP values suggesting close proximity of nerve tissue. Seventy five percent of screws had CMAP results above 10mA and had an average distance of 0.35cm (SD 0.23) horizontally and 0.46cm (SD 0.26) vertically from the pedicle edge. Additional 12% had a distance from the edge of the pedicle less than 0mm indicating cortical breach but had CMAP values above 10mA. A poor correlation between CMAP values and screw position was found. Discussion: In this study CMAP values above 10mA indicated correct screw position in the majority of cases. The zone of 10-20mA CMAP carries highest risk of a misplaced screw despite high CMAP value (17% of screws this CMAP range). In order to improve accuracy of EMG predictive value further research is warranted including improvement of probing techniques.
Resumo:
Several evidences suggest that astrocytes release small transmitter molecules, peptides, and protein factors via regulated exocytosis, implying that they function as specialized neurosecretory cells. However, very little is known about the molecular and functional properties of regulated secretion in astrocytes in the adult brain. Establishing these properties is central to the understanding of the communication mode(s) of these cells and their role(s) in the control of synaptic functions and of cerebral blood flow. In this study, we have set-up a high-resolution confocal microscopy approach to distinguish protein expression in astrocytic structures and neighboring synaptic terminals in adult brain tissue. This approach was applied to investigate the expression pattern of core SNARE proteins for vesicle fusion in the dentate gyrus and CA1 regions of the mouse hippocampus. Our comparative analysis shows that astrocytes abundantly express, in their cell body and main processes, all three protein partners necessary to form an operational SNARE complex but not in the same isoforms expressed in neighbouring synaptic terminals. Thus, SNAP25 and VAMP2 are absent from astrocytic processes and typically concentrated in terminals, while SNAP23 and VAMP3 have the opposite expression pattern. Syntaxin 1 is present in both synaptic terminals and astrocytes. These data support the view that astrocytes in the adult hippocampus can communicate via regulated exocytosis and also indicates that astrocytic exocytosis may differ in its properties from action potential-dependent exocytosis at neuronal synapses, as it relies on a distinctive set of SNARE proteins.
Resumo:
Abstract: The genesis of the cardiac action potential, which accounts for the cardiac contraction, is due to the sodium current INa mediated by the voltage-gated sodium channel Nav1.5. Several cardiac arrhythmias such as the Brugada syndrome are known te be caused by mutations in SCN5A, the gene encoding Nav1.5. Studies of these mutations allowed a better understanding of biophysical and functional properties of Nav1.5. However, only few investigations have been performed in order to understand the regulation of Nav1.5. During my thesis, I investigated different mechanisms of regulation of Nav1.5 using a heterologous expression system, HEK293 cells, coupled with a technique of sodium current recording: the patch clamp in whole cell configuration. In previous studies it has been shown that an enzyme of the Nedd4 family (Nedd4-2) regulates an epithelial sodium channel via the interaction with PY-motifs present in the latter. Interestingly, Nav1.5 contains a similar PY-motif, which motivated us to study the role of Nedd4-2 expressed in heart for the regulation of Nav1.5. In a second study, we investigated the implication of two Nav1.5 mutants, which were either less functional or net functional (Nav1.5 R535X and Nav1.5 L325R respectively) implied in the genesis of the Brugada syndrome by fever. Our results established two mechanisms implied in Nav1.5 regulation. The first one implies that following the interaction between the PY-motif of Nav1.5 and Nedd4- 2 Nav1.5 is ubiquitinated by Nedd4-2. This ubiquitination leads to the internalization of Nav1 .5. The second mechanism is a phenomenon called the "dominant negative" effect of Nav1.5 L325R on Nay1.5 where the decrease of 'Na is potentially due to the retention of Nav1.5 by Nav1.5 L325R in an undefined intracellular compartment. These studies defined two mechanisms of Nav1.5 regulation, which could play an important role for the genesis of cardiac arrhythmias where molecular processes are still poorly understood. Résumé La genèse du potentiel d'action cardiaque, permettant la contraction cardiaque, est due au courant sodique INa issu des canaux sodiques cardiaques dépendants du voltage Nav1.5. Nombreuses arythmies cardiaques telles que le syndrome de Brugada sont connues pour être liées à des mutations du gène SCN5A, codant pour Nav1.5. L'étude de ces mutations a permis une meilleure compréhension des propriétés structurelles et fonctionnelles de Nav1.5 et leurs implications dans la genèse de ces pathologies. Néanmoins peu d'études ont été menées afin de comprendre les mécanismes de régulation de Nav1.5. Mon travail de thèse a consisté à étudier des mécanismes de régulation de Nav1.5 en utilisant un système d'expression hétérologue, les cellules HEK293, couplé à une technique d'enregistrement des courants sodiques, le "patch clamp" en configuration cellule entière. La présence sur Nav1.5 d'un motif-PY similaire à ceux nécessaires pour la régulation d'un canal épithélial sodique par une enzyme de la famille de Nedd4, nous a amenée à étudier le rôle de ces ubiquitine-ligases, en particulier Nedd4-2, dans la régulation de Nav1.5. La seconde étude s'est intéressée aux conséquences de deux mutations de SCN5A codant pour deux mutants peu ou pas fonctionnels (Nav1.5 L325R et Nav1.5 R535X respectivement) retrouvées chez des patients présentant un syndrome de Brugada exacerbé par un état fébrile. Nos résultats ont permis d'établir deux mécanismes de régulation de Nav1.5 L'un par Nedd4-2 qui implique rubiquitination de Nav1.5 par cette ligase suite à l'interaction entre le motif-PY de Nav1.5 et Nedd4-2. Cette modification déclenche l'internalisation du canal impliquée dans la diminution d'INa. Le second mécanisme quant à lui est un effet "dominant négatif" de Nav1.5 L325R sur Nav1.5 aboutissant à une diminution d'INa suite à la séquestration intracellulaire potentielle de Nav1.5 par Nav1.5 L325R. Ces études ont mis en évidence deux mécanismes de régulation de Nav1.5 pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des arythmies cardiaques dont les processus moléculaires au sein des cardiomyocytes, impliquant des modifications du courant sodiques, sont encore mal compris. Résumé destiné à un large public La dépolarisation électrique de la membrane des cellules cardiaques permet la contraction du coeur. La génèse de cette activité électrique est due au courant sodique issu d'un type de canal à sodium situé dans la membrane des cellules cardiaques. De nombreuses pathologies provoquant des troubles du rythme cardiaque sont issues de mutations du gène qui code pour ce canal à sodium. Ces canaux mutants, entrainant diverses pathologies cardiaques telles que le syndrome de Brugada, ont été largement étudiées. Néanmoins, peu de travaux ont été réalisés sur les mécanismes de régulation de ce canal à sodium non muté. Mon travail de thèse a consisté à étudier certains des mécanismes de régulation de ce canal à sodium en utilisant une technique permettant l'enregistrement des courants sodiques issus de l'expression de ces canaux à sodium à la membrane de cellules mammifères. La présence sur ce canal à sodium d'une structure spécifique, similaire à celle nécessaire pour la régulation d'un canal épithélial à sodium par une enzyme appelée Nedd4-2, nous a amenée à étudier le rôle de cette enzyme dans la régulation de ce canal à sodium. La seconde étude s'est intéressée aux rôles de deux mutations du gène codant pour ce canal à sodium retrouvées chez des patients présentant un syndrome de Brugada exacerbé par la fièvre. Nos résultats nous ont permis d'établir deux mécanismes de régulation de ce canal à sodium diminuant le courant sodique l'un par l'action de l'enzyme Nedd4-2, suite à son interaction avec ce canal, qui modifie ce canal à sodium (ubiquitination) diminuant de ce fait la densité membranaire du canal. L'autre par un mécanisme suggérant un effet négatif de l'un des canaux mutants sur l'expression à la membrane du canal à sodium non muté. Ces études ont mis en évidence deux mécanismes de régulation de ce canal à sodium pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des troubles du rythme cardiaques dont les mécanismes cellulaires sont encore incompris.
Resumo:
RESUME :Introduction. Les maladies cardiovasculaires représentent la première cause de mortalité dans les pays développés et l'insuffisance cardiaque (IC) est la plus fréquente. Suite à un infarctus, le coeur des patients subit un remodelage ventriculaire pouvant évoluer vers un état d'IC. L'IC se définit comme un état dans lequel le coeur n'est plus capable d'approvisionner suffisamment les organes et cet état s'accompagne souvent de troubles du rythme cardiaque. Le remodelage ventriculaire touche de nombreux gènes codant à la fois pour les voies métaboliques et pour des canaux ioniques favorisant ainsi l'apparition des arythmies responsables de la mort subite des patients atteints d'IC. Comprendre ce passage entre remodelage et IC est crucial afin de pouvoir un jour prévenir l'IC et les complications médicales qui l'accompagnent. Nous nous sommes intéressés aux canaux potassiques dépendants de l'ATP (KATP) car ces canaux ont la capacité de coupler le métabolisme de la cellule à son activité électrique. En effet, les canaux KATP s'ouvrent quand la charge énergétique (rapport ATP/ ADP) de la cellule chute. Dans les cardiomyocytes, l'ouverture des KATP induit une hyperpolarisation de la membrane cellulaire ce qui diminue indirectement la surcharge calcique et de ce fait préserve la cellule. Les canaux KATp sont formés de 4 sous-unités Kir6.x (Kir6.1 ou Kir6.2) formant le pore du canal associées à 4 sous-unités régulatrices SUR. Les propriétés électrophysiologiques ainsi que la sensibilité pharmacologique des canaux KATP dépendent de leur composition et seuls les canaux KATP formés par la sous-unité Kirô.l sont activés par le diazoxyde.Méthodes et résultats. Nous avons d'abord montré dans un modèle in vivo d'IC chez le rat adulte que les sous-unités Kir6.1 et SUR sont surexprimées dans ces conditions pathologiques. Par ailleurs, les cardiomyocytes issus des coeurs infarcis deviennent sensibles au diazoxyde reflétant la surexpression de Kir6.1. Les potentiels d'action qui sont prolongés dans l'IC et qui sont à l'origine d'arythmies majeures sont normalisés par l'ouverture des canaux KATp induite par le diazoxyde. Ainsi, l'ouverture pharmacologique des canaux KATp contribuerait à la cardio-protection. Dans une seconde partie, nous avons déterminé quels étaient les facteurs de transcription responsables de ce changement d'expression des sous-unités formant les KATP. Dans notre modèle, nous avons pu montrer que la surexpression de Kirô.l est due aux facteurs de transcription Fox03 et FoxF2 qui est aussi responsable de la surexpression des sous-unités SUR. Dans la dernière partie de ce travail, nous avons mis au point un modèle d'IC in vitro en cultivant les cardiomyocytes de rats adultes en présence d'angiotensine II (Angll) ou de TNFa. Ce modèle expérimental nous a non seulement permis de mettre en relation l'importance de L'AnglI et du TNFa sur le remodelage des canaux KATP mais aussi de développer un modèle in vitro présentant les mêmes caractéristiques que le modèle in vivo concernant le remodelage des KATP lors de l'IC. Ce dernier modèle expérimental ouvre des perspectives afin de mieux caractériser les voies de signalisation impliquées dans le remodelage des canaux KATp lors de l'IC.Conclusion. Les canaux KATp subissent un remodelage lors de l'IC et les résultats obtenus montrent le potentiel cardio-protecteur de ces canaux.ABSTRACT :Background and aim. Cardiovascular disease is the leading cause of death in developed countries and heart failure (HF) is the most common. Following myocardial infarction, the heart of the patient undergoes ventricular remodeling which may evolve toward a state of HF. HF is defined as a state in which heart is unable to supply enough blood to organs and this state is often accompanied by cardiac arrhythmias. Ventricular remodeling involves many genes coding for both metabolic enzymes and ion channels. Changes in ion channel expression can promote arrhythmias responsible for sudden death in patients with HF. A better understanding of the transition between remodeling and HF is crucial in order to prevent the complications associated to HF We were interested in ATP-dependent potassium channels (KATp) because they couple cell metabolism to electrical activity of the cell. Indeed, KATP channels open when the energy charge (ratio of ATP / ADP) of the cell collapses. In cardiomyocytes, the opening of KATP channels induces hyper- polanzation of the cell membrane which reduces calcium overload and thereby protects the cell. KATp channels are composed by 4 Kir6.x subumts (Kir6.1 or Kir6.2) forming the pore channel associated with 4 regulatory subunits SUR. The electrophysiological properties as well as pharmacological sensitivity of KATp channels depend on their composition and only KATP channels formed by Kir6.1 subunit are activated by diazoxide.Methods and results. Firstly, using an in vivo model of HF in adult rats, we showed that Kir6.1 and SUR subunits are overexpressed in HF. In addition, cardiomyocytes from post-infarction hearts became sensitive to diazoxide reflecting the overexpression of the Kir6.1 subunit. The opening of KATP by diazoxide tended to reduce the action potential duration (APD) which is extended in HF. This increase in APD is known to be a major source of arrhythmias during HF. Therefore, the opening of KATP channels by diazoxide would be cardio-protective. Secondly, we wanted to determine which transcription factors were responsible for this KATP remodeling. In our model of HF, we showed that overexpression of Kir6.1 is due to the transcription factors Fox03 and FOXF2 which is also responsible for SUR subunits overexpression. Thirdly, we developed an in vitro model of HF by cultivation of adult rat cardiomyocytes in the presence of angiotensin II (Angll) or TNFa. This model is very interesting not only because it underlines the importance of Angll and TNFa in KATp remodeling but also because this in vitro model presents the same KATP remodeling as the in vivo model of HF. These findings show that our in vitro model of HF opens up many possibilities to investigate more precisely the signaling pathways involved in remodeling of the KATP channels in HF.Conclusion. KATP channels undergo remodeling during HF and our results show the cardio¬protective potential of KATP channels in this disease.
Resumo:
BACKGROUND: Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. β and γENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is unclear. RESULTS: Here we show that deleting β and γENaC sodium channels in sensory neurons does not result in mechanosensory behavioural deficits. We had shown previously that Nav1.7/Nav1.8 double knockout mice have major deficits in behavioural responses to noxious mechanical pressure. However, all classes of mechanically activated currents in DRG neurons are unaffected by deletion of the two sodium channels. In contrast, the ability of Nav1.7/Nav1.8 knockout DRG neurons to generate action potentials is compromised with 50% of the small diameter sensory neurons unable to respond to electrical stimulation in vitro. CONCLUSION: Behavioural deficits in Nav1.7/Nav1.8 knockout mice reflects a failure of action potential propagation in a mechanosensitive set of sensory neurons rather than a loss of primary transduction currents. DEG/ENaC sodium channels are not mechanosensors in mouse sensory neurons.
Resumo:
INTRODUCTION: Paroxysmal atrial fibrillation (AF) may be triggered by intermittent atrial tachycardia, and ultimately lead to persistent AF. However, the mechanisms by which intermittent atrial tachycardia promotes sustained AF are not well understood. METHODS AND RESULTS: Eight sheep were chronically implanted with 2 pacemakers for the recording of broadband right atrial unipolar electrograms, and for the delivery of electrophysiological stimulation protocols and intermittent right atrial tachycardia. Right atrial kinetics of activation recovery interval (ARI) as a surrogate for action potential duration, of conduction time and velocity, and of repolarization alternans were analyzed at incremental pacing rates during the remodeling process induced by weeks of intermittent atrial tachycardia until the development of sustained AF. Intermittent atrial tachycardia decreased ARI and blunted its rate adaptation, facilitated atrial capture, and slowed conduction at high rates, and increased susceptibility to pacing-induced AF. In spite of blunted ARI rate adaptation, right atrial repolarization alternans was maintained during remodeling, and further increased in magnitude just before rapid pacing-induced AF. CONCLUSION: This study suggests that weeks of intermittent right atrial tachycardia result in a gradual electrical remodeling favorable for wavebreaks and reentry that may facilitate fibrillation.
Resumo:
AIMS: Experimental models have reported conflicting results regarding the role of dispersion of repolarization in promoting atrial fibrillation (AF). Repolarization alternans, a beat-to-beat alternation in action potential duration, enhances dispersion of repolarization when propagation velocity is involved. METHODS AND RESULTS: In this work, original electrophysiological parameters were analysed to study AF susceptibility in a chronic sheep model of pacing-induced AF. Two pacemakers were implanted, each with a single right atrial lead. Right atrial depolarization and repolarization waves were documented at 2-week intervals. A significant and gradual decrease in the propagation velocity at all pacing rates and in the right atrial effective refractory period (ERP) was observed during the weeks of burst pacing before sustained AF developed when compared with baseline conditions. Right atrial repolarization alternans was observed, but because of the development of 2/1 atrioventricular block with far-field ventricular interference, its threshold could not be precisely measured. Non-sustained AF was not observed at baseline, but appeared during the electrical remodelling in association with a decrease in both ERP and propagation velocity. CONCLUSION: We report here on the feasibility of measuring ERP, atrial repolarization alternans, and propagation velocity kinetics and their potential in predicting susceptibility to AF in a free-behaving model of pacing-induced AF using the standard pacemaker technology.