2 resultados para Acrylic Varnish
em Université de Lausanne, Switzerland
Resumo:
Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.
Resumo:
Measurements and simulations were performed to assess workers' exposure to solvent vapors and aerosols during the waterproofing of a tiled surface. This investigation followed two recent incidents in the same company where workers experienced acute respiratory illness after spraying a stain-repellent resin containing fluorinated polymers on stone-tiled walls and floors. Because the waterproofing activity had been done for years at the tile company without encountering any exposure problems prior to these cases, it was strongly suspected that the incidents were linked to a recent change in the composition of the coating mixture. Experimental measurements and simulations indicated that the emission rate of particles smaller than 10 microm may be estimated at 0.66 mg/sec (SD 0.10) for the old resin and at 0.37 mg/sec (SD 0.04) for the new one. The measurement of the solvent emission rate from surfaces coated with the two resins indicated that shortly after spraying, the emission was in the range of 18 to 20 mg/sec x m2 and was similar for both products. Solvent and overspray emission rates were introduced in a two-zone compartment model. The results obtained in the near-field indicate significant exposure to overspray mist (7 and 34 mg/m3 for new resin) and solvent vapors (80 to 350 ppm for the new resin). It was also shown that the introduction of the new resin tended to significantly decrease the levels of solvents and particulates in the workers' breathing zone. These results strongly suggest that cases of acute respiratory illness are related to the specific toxicity of the fluorinated polymer itself. The fact that the same polymer is used in various commercial products raises concern regarding other possible occupational and domestic exposures.