51 resultados para Acoustic Arrays, Array Signal Processing, Calibration, Speech Enhancement
em Université de Lausanne, Switzerland
Resumo:
At high magnetic field strengths (≥ 3T), the radiofrequency wavelength used in MRI is of the same order of magnitude of (or smaller than) the typical sample size, making transmit magnetic field (B1+) inhomogeneities more prominent. Methods such as radiofrequency-shimming and transmit SENSE have been proposed to mitigate these undesirable effects. A prerequisite for such approaches is an accurate and rapid characterization of the B1+ field in the organ of interest. In this work, a new phase-sensitive three-dimensional B1+-mapping technique is introduced that allows the acquisition of a 64 × 64 × 8 B1+-map in ≈ 20 s, yielding an accurate mapping of the relative B1+ with a 10-fold dynamic range (0.2-2 times the nominal B1+). Moreover, the predominant use of low flip angle excitations in the presented sequence minimizes specific absorption rate, which is an important asset for in vivo B1+-shimming procedures at high magnetic fields. The proposed methodology was validated in phantom experiments and demonstrated good results in phantom and human B1+-shimming using an 8-channel transmit-receive array.
Resumo:
Red blood cell (RBC) parameters such as morphology, volume, refractive index, and hemoglobin content are of great importance for diagnostic purposes. Existing approaches require complicated calibration procedures and robust cell perturbation. As a result, reference values for normal RBC differ depending on the method used. We present a way for measuring parameters of intact individual RBCs by using digital holographic microscopy (DHM), a new interferometric and label-free technique with nanometric axial sensitivity. The results are compared with values achieved by conventional techniques for RBC of the same donor and previously published figures. A DHM equipped with a laser diode (lambda = 663 nm) was used to record holograms in an off-axis geometry. Measurements of both RBC refractive indices and volumes were achieved via monitoring the quantitative phase map of RBC by means of a sequential perfusion of two isotonic solutions with different refractive indices obtained by the use of Nycodenz (decoupling procedure). Volume of RBCs labeled by membrane dye Dil was analyzed by confocal microscopy. The mean cell volume (MCV), red blood cell distribution width (RDW), and mean cell hemoglobin concentration (MCHC) were also measured with an impedance volume analyzer. DHM yielded RBC refractive index n = 1.418 +/- 0.012, volume 83 +/- 14 fl, MCH = 29.9 pg, and MCHC 362 +/- 40 g/l. Erythrocyte MCV, MCH, and MCHC achieved by an impedance volume analyzer were 82 fl, 28.6 pg, and 349 g/l, respectively. Confocal microscopy yielded 91 +/- 17 fl for RBC volume. In conclusion, DHM in combination with a decoupling procedure allows measuring noninvasively volume, refractive index, and hemoglobin content of single-living RBCs with a high accuracy.
Resumo:
OBJECTIVE: The optimal coronary MR angiography sequence has yet to be determined. We sought to quantitatively and qualitatively compare four coronary MR angiography sequences. SUBJECTS AND METHODS. Free-breathing coronary MR angiography was performed in 12 patients using four imaging sequences (turbo field-echo, fast spin-echo, balanced fast field-echo, and spiral turbo field-echo). Quantitative comparisons, including signal-to-noise ratio, contrast-to-noise ratio, vessel diameter, and vessel sharpness, were performed using a semiautomated analysis tool. Accuracy for detection of hemodynamically significant disease (> 50%) was assessed in comparison with radiographic coronary angiography. RESULTS: Signal-to-noise and contrast-to-noise ratios were markedly increased using the spiral (25.7 +/- 5.7 and 15.2 +/- 3.9) and balanced fast field-echo (23.5 +/- 11.7 and 14.4 +/- 8.1) sequences compared with the turbo field-echo (12.5 +/- 2.7 and 8.3 +/- 2.6) sequence (p < 0.05). Vessel diameter was smaller with the spiral sequence (2.6 +/- 0.5 mm) than with the other techniques (turbo field-echo, 3.0 +/- 0.5 mm, p = 0.6; balanced fast field-echo, 3.1 +/- 0.5 mm, p < 0.01; fast spin-echo, 3.1 +/- 0.5 mm, p < 0.01). Vessel sharpness was highest with the balanced fast field-echo sequence (61.6% +/- 8.5% compared with turbo field-echo, 44.0% +/- 6.6%; spiral, 44.7% +/- 6.5%; fast spin-echo, 18.4% +/- 6.7%; p < 0.001). The overall accuracies of the sequences were similar (range, 74% for turbo field-echo, 79% for spiral). Scanning time for the fast spin-echo sequences was longest (10.5 +/- 0.6 min), and for the spiral acquisitions was shortest (5.2 +/- 0.3 min). CONCLUSION: Advantages in signal-to-noise and contrast-to-noise ratios, vessel sharpness, and the qualitative results appear to favor spiral and balanced fast field-echo coronary MR angiography sequences, although subjective accuracy for the detection of coronary artery disease was similar to that of other sequences.
Comparison of three commercially available radio frequency coils for human brain imaging at 3 Tesla.
Resumo:
OBJECTIVE: To evaluate a transverse electromagnetic (TEM), a circularly polarized (CP) (birdcage), and a 12-channel phased array head coil at the clinical field strength of B0 = 3T in terms of signal-to-noise ratio (SNR), signal homogeneity, and maps of the effective flip angle alpha. MATERIALS AND METHODS: SNR measurements were performed on low flip angle gradient echo images. In addition, flip angle maps were generated for alpha(nominal) = 30 degrees using the double angle method. These evaluation steps were performed on phantom and human brain data acquired with each coil. Moreover, the signal intensity variation was computed for phantom data using five different regions of interest. RESULTS: In terms of SNR, the TEM coil performs slightly better than the CP coil, but is second to the smaller 12-channel coil for human data. As expected, both the TEM and the CP coils show superior image intensity homogeneity than the 12-channel coil, and achieve larger mean effective flip angles than the combination of body and 12-channel coil with reduced radio frequency power deposition. CONCLUSION: At 3T the benefits of TEM coil design over conventional lumped element(s) coil design start to emerge, though the phased array coil retains an advantage with respect to SNR performance.
Resumo:
Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.
Resumo:
The aim was to propose a strategy for finding reasonable compromises between image noise and dose as a function of patient weight. Weighted CT dose index (CTDI(w)) was measured on a multidetector-row CT unit using CTDI test objects of 16, 24 and 32 cm in diameter at 80, 100, 120 and 140 kV. These test objects were then scanned in helical mode using a wide range of tube currents and voltages with a reconstructed slice thickness of 5 mm. For each set of acquisition parameter image noise was measured and the Rose model observer was used to test two strategies for proposing a reasonable compromise between dose and low-contrast detection performance: (1) the use of a unique noise level for all test object diameters, and (2) the use of a unique dose efficacy level defined as the noise reduction per unit dose. Published data were used to define four weight classes and an acquisition protocol was proposed for each class. The protocols have been applied in clinical routine for more than one year. CTDI(vol) values of 6.7, 9.4, 15.9 and 24.5 mGy were proposed for the following weight classes: 2.5-5, 5-15, 15-30 and 30-50 kg with image noise levels in the range of 10-15 HU. The proposed method allows patient dose and image noise to be controlled in such a way that dose reduction does not impair the detection of low-contrast lesions. The proposed values correspond to high- quality images and can be reduced if only high-contrast organs are assessed.
Resumo:
Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.
Resumo:
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.
Resumo:
PURPOSE: Visualization of coronary blood flow in the right and left coronary system in volunteers and patients by means of a modified inversion-prepared bright-blood coronary magnetic resonance angiography (cMRA) sequence. MATERIALS AND METHODS: cMRA was performed in 14 healthy volunteers and 19 patients on a 1.5 Tesla MR system using a free-breathing 3D balanced turbo field echo (b-TFE) sequence with radial k-space sampling. For magnetization preparation a slab selective and a 2D selective inversion pulse were used for the right and left coronary system, respectively. cMRA images were evaluated in terms of clinically relevant stenoses (< 50 %) and compared to conventional catheter angiography. Signal was measured in the coronary arteries (coro), the aorta (ao) and in the epicardial fat (fat) to determine SNR and CNR. In addition, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: The use of a selective inversion pre-pulse allowed direct visualization of the coronary blood flow in the right and left coronary system. The measured SNR and CNR, vessel length, and vessel sharpness in volunteers (SNR coro: 28.3 +/- 5.0; SNR ao: 37.6 +/- 8.4; CNR coro-fat: 25.3 +/- 4.5; LAD: 128.0 cm +/- 8.8; RCA: 74.6 cm +/- 12.4; Sharpness: 66.6 % +/- 4.8) were slightly increased compared to those in patients (SNR coro: 24.1 +/- 3.8; SNR ao: 33.8 +/- 11.4; CNR coro-fat: 19.9 +/- 3.3; LAD: 112.5 cm +/- 13.8; RCA: 69.6 cm +/- 16.6; Sharpness: 58.9 % +/- 7.9; n.s.). In the patient study the assessment of 42 coronary segments lead to correct identification of 10 clinically relevant stenoses. CONCLUSION: The modification of a previously published inversion-prepared cMRA sequence allowed direct visualization of the coronary blood flow in the right as well as in the left coronary system. In addition, this sequence proved to be highly sensitive regarding the assessment of clinically relevant stenotic lesions.
Resumo:
In this article we propose a novel method for calculating cardiac 3-D strain. The method requires the acquisition of myocardial short-axis (SA) slices only and produces the 3-D strain tensor at every point within every pair of slices. Three-dimensional displacement is calculated from SA slices using zHARP which is then used for calculating the local displacement gradient and thus the local strain tensor. There are three main advantages of this method. First, the 3-D strain tensor is calculated for every pixel without interpolation; this is unprecedented in cardiac MR imaging. Second, this method is fast, in part because there is no need to acquire long-axis (LA) slices. Third, the method is accurate because the 3-D displacement components are acquired simultaneously and therefore reduces motion artifacts without the need for registration. This article presents the theory of computing 3-D strain from two slices using zHARP, the imaging protocol, and both phantom and in-vivo validation.
Resumo:
PURPOSE: To improve coronary magnetic resonance angiography (MRA) by combining a two-dimensional (2D) spatially selective radiofrequency (RF) pulse with a T2 -preparation module ("2D-T2 -Prep"). METHODS: An adiabatic T2 -Prep was modified so that the first and last pulses were of differing spatial selectivity. The first RF pulse was replaced by a 2D pulse, such that a pencil-beam volume is excited. The last RF pulse remains nonselective, thus restoring the T2 -prepared pencil-beam, while tipping the (formerly longitudinal) magnetization outside of the pencil-beam into the transverse plane, where it is then spoiled. Thus, only a cylinder of T2 -prepared tissue remains for imaging. Numerical simulations were followed by phantom validation and in vivo coronary MRA, where the technique was quantitatively evaluated. Reduced field-of-view (rFoV) images were similarly studied. RESULTS: In vivo, full field-of-view 2D-T2 -Prep significantly improved vessel sharpness as compared to conventional T2 -Prep, without adversely affecting signal-to-noise (SNR) or contrast-to-noise ratios (CNR). It also reduced respiratory motion artifacts. In rFoV images, the SNR, CNR, and vessel sharpness decreased, although scan time reduction was 60%. CONCLUSION: When compared with conventional T2 -Prep, the 2D-T2 -Prep improves vessel sharpness and decreases respiratory ghosting while preserving both SNR and CNR. It may also acquire rFoV images for accelerated data acquisition.
Resumo:
PURPOSE: To evaluate the feasibility of visualizing the stent lumen using coronary magnetic resonance angiography in vitro. MATERIAL AND METHODS: Nineteen different coronary stents were implanted in plastic tubes with an inner diameter of 3 mm. The tubes were positioned in a plastic container filled with gel and included in a closed flow circuit (constant flow 18 cm/sec). The magnetic resonance images were obtained with a dual inversion fast spin-echo sequence. For intraluminal stent imaging, subtraction images were calculated from scans with and without flow. Subsequently, intraluminal signal properties were objectively assessed and compared. RESULTS: As a function of the stent type, various degrees of in-stent signal attenuation were observed. Tantalum stents demonstrated minimal intraluminal signal attenuation. For nitinol stents, the stent lumen could be identified, but the intraluminal signal was markedly reduced. Steel stents resulted in the most pronounced intraluminal signal voids. CONCLUSIONS: With the present technique, radiofrequency penetration into the stents is strongly influenced by the stent material. Thesefindings may have important implicationsforfuture stent design and stent imaging strategies.
Resumo:
Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.
Resumo:
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.