23 resultados para Acid treated starch
em Université de Lausanne, Switzerland
Resumo:
While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner.
Resumo:
Treatment of bean cuttings with 4-chlororesorcinol (4-CR), known to increase the number of roots and extend their distribution, prevented the accumulation of free indol-3-yl-acetic acid (IAA) in the hypocotyls within 24 h after cutting preparation. In mung bean there was no change in the distribution (upper half vs. 1 ower half of the hypocotyl) of IAA within the hypocotyl as a result of the treatment. In bean cuttings the treatment with 4-CR prevented the accumulation of IAA in the bottom of the cutting. Oxidation of IAA as a measure of IAA oxidase activity in bean was enhanced appreciably by 4-chlororesorcinol. The level of abscisic acid in mung bean, on the other hand, remained 3-4 fold higher than in the control, yet still about 50% lower than the zero time level. In untreated mung bean cuttings the activity of peroxidase increased after cutting preparation. In contrast, the activity of peroxidase in 4-Cr-treated cuttings was consistently lower. In order to relate to the effect of exogenously applied auxin the level of peroxidase was measured also in indol-3-yl-butyric acid-treated cuttings. The overall peroxidase activity in IBA-treated cuttings was not affected. However, when assaying for the different isozymes the drop in peroxidase activity was most evident in the inducible basic isoperoxidases both in 4-CR and IBA treatments. It appears that the exposure to 4-CR exerts an effect that is similar to that of exogenously applied auxin, affecting the activity of basic peroxidases and enhancing the oxidation of endogenous IAA, thus allowing the organization of the primordia.
Resumo:
Glioblastoma patients undergoing treatment with surgery followed by radiation and temozolomide chemotherapy often develop a state of immunosuppression and are at risk for opportunistic infections and reactivation of hepatitis and herpes viruses. We report the case of a 48-year-old glioblastoma patient who developed acute cholestatic hepatitis with hepatic failure during adjuvant treatment with temozolomide and the integrin inhibitor cilengitide. A viral hepatitis was excluded and valproic acid treatment was stopped. Upon normalisation of the liver tests, temozolomide treatment was resumed without perturbation of the liver tests. Valproic acid related idiosyncratic drug induced hepatotoxicity should be considered as a differential diagnosis in glioblastoma patients undergoing adjuvant therapy.
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
A 3D in vitro model of rat organotypic brain cell cultures in aggregates was used to investigate neurotoxicity mechanisms in glutaric aciduria type I (GA-I). 1 mM glutarate (GA) or 3-hydroxyglutarate (3OHGA) were repeatedly added to the culture media at two different time points. In cultures treated with 3OHGA, we observed an increase in lactate in the medium, pointing to a possible inhibition of Krebs cycle and respiratory chain. We further observed that 3OHGA and to a lesser extend GA induced an increase in ammonia production with concomitant decrease of glutamine concentrations, which may suggest an inhibition of the astrocytic enzyme glutamine synthetase. These previously unreported findings may uncover a pathogenic mechanism in this disease which has deleterious effects on early stages of brain development. By immunohistochemistry we showed that 3OHGA increased non-apoptotic cell death. On the cellular level, 3OHGA and to a lesser extend GA led to cell swelling and loss of astrocytic fibers whereas a loss of oligodendrocytes was only observed for 3OHGA. We conclude that 3OHGAwas the most toxic metabolite in our model for GA-I. 3OHGA induced deleterious effects on glial cells, an increase of ammonia production, and resulted in accentuated cell death of non-apoptotic origin.
Resumo:
Mycophenolic acid, a selective inhibitor of the de novo synthesis of guanosine nucleotides in T and B lymphocytes, has been proposed to inhibit human immunodeficiency virus (HIV) replication in vitro by depleting the substrate (guanosine nucleotides) for reverse transcriptase. Here we show that mycophenolic acid induced apoptosis and cell death in a large proportion of activated CD4+ T cells, thus indicating that it may inhibit HIV infection in vitro by both virological mechanisms and immunological mechanisms (depletion of the pool of activated CD4+ T lymphocytes). Administration of mycophenolate mophetil, the ester derivate of mycophenolic acid, to HIV-infected subjects treated with anti-retroviral therapy and with undetectable viremia resulted in the reduction of the number of dividing CD4 + and CD8+ T cells and in the inhibition of virus isolation from purified CD4+ T-cell populations. Based on these results, the potential use of mycophenolate mophetil in the treatment of HIV infection deserves further investigation in controlled clinical trials.
Resumo:
Summary. The outcome of hepatitis C virus (HCV) infection and the likelihood of a sustained virological response (SVR) to antiviral therapy depends on both viral and host characteristics. In vitro studies demonstrated that bile acids (BA) interfere with antiviral interferon effects. We investigate the influence of plasma BA concentrations and an ABCB11 polymorphism associated with lower transporter expression on viral load and SVR. Four hundred and fifty-one Caucasian HCV-patients treated with PEG-interferon and ribavirin were included in the study. ABCB11 1331T>C was genotyped, and plasma BA levels were determined. The 1331C allele was slightly overrepresented in HCV-patients compared to controls. In HCV-patients, a significant difference between patients achieving SVR vs non-SVR was observed for HCV-2/3 (5 vs 9 μm; P = 0.0001), while median BA levels in HCV-1 were marginally elevated. Normal BA levels <8 μm were significantly associated with SVR (58.3%vs 36.3%; OR 2.48; P = 0.0001). This difference was significant for HCV-2/3 (90.7%vs 67.6%; P = 0.002) but marginal in HCV-1 (38.7%vs 27.8%; P = 0.058). SVR rates were equivalent between ABCB11 genotypes for HCV-1, but increased for HCV-2/3 (TT 100%vs CC 78%; OR 2.01; P = 0.043). IL28B genotype had no influence on these associations. No correlation between BA levels and HCV RNA was detected for any HCV genotype. The higher allelic frequency of ABCB11 1331C in HCV-patients compared to controls may indirectly link increased BA to HCV chronicity. Our data support a role for BA as host factor affecting therapy response in HCV-2/3 patients, whereas a weaker association was found for HCV-1.
Resumo:
Induction of drug-metabolizing enzymes (DMEs) is highly species-specific and can lead to drug-drug interaction and toxicities. In this series of studies we tested the species specificity of the antidiabetic drug development candidate and mixed peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949, EMD) with regard to the induction of gene expression and activities of DMEs, their regulators, and typical PPAR target genes. EMD clearly induced PPARalpha target genes in rats in vivo and in rat hepatocytes but lacked significant induction of DMEs, except for cytochrome P450 (P450) 4A. CYP2C and CYP3A were consistently induced in livers of EMD-treated monkeys. Interestingly, classic rodent peroxisomal proliferation markers were induced in monkeys after 17 weeks but not after a 4-week treatment, a fact also observed in human hepatocytes after 72 h but not 24 h of EMD treatment. In human hepatocyte cultures, EMD showed similar gene expression profiles and induction of P450 activities as in monkeys, indicating that the monkey is predictive for human P450 induction by EMD. In addition, EMD induced a similar gene expression pattern as the PPARalpha agonist fenofibrate in primary rat and human hepatocyte cultures. In conclusion, these data showed an excellent correlation of in vivo data on DME gene expression and activity levels with results generated in hepatocyte monolayer cultures, enabling a solid estimation of human P450 induction. This study also clearly highlighted major differences between primates and rodents in the regulation of major inducible P450s, with evidence of CYP3A and CYP2C inducibility by PPARalpha agonists in monkeys and humans.
Resumo:
The treatment of reflux disease did not changed. PPI treatment remains the first line treatment and surgery a second line treatment. The effect of surgery in reflux disease reduces and, after ten years, a part of the operated patients needs PPI again. The triple therapy is the treatment of choice of Helicobacter pylori infection. Patients with persistent Helicobacter pylori infection, after a first treatment, should be treated with a sequential treatment. PPI are effective in the prevention of gastroduodenal lesions and in the treatment of dyspeptic symptoms during NSAID treatment. IPP should be given to all patients presenting dyspeptic symptoms under NSAID or COX-2 administration.
Resumo:
Combining measurements of the monoamine metabolites in the cerebrospinal fluid (CSF) and neuroimaging can increase efficiency of drug discovery for treatment of brain disorders. To address this question, we examined five drug-naïve patients suffering from schizophrenic disorder. Patients were assessed clinically, using the Positive and Negative Syndrome Scale (PANSS): at baseline and then at weekly intervals. Plasma and CSF levels of quetiapine and norquetiapine as well CSF 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindole-acetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were obtained at baseline and again after at least a 4 week medication trail with 600 mg/day quetiapine. CSF monoamine metabolites levels were compared with dopamine D(2) receptor occupancy (DA-D(2)) using [(18)F]fallypride and positron emission tomography (PET). Quetiapine produced preferential occupancy of parietal cortex vs. putamenal DA-D(2), 41.4% (p<0.05, corrected for multiple comparisons). DA-D(2) receptor occupancies in the occipital and parietal cortex were correlated with CSF quetiapine and norquetiapine levels (p<0.01 and p<0.05, respectively). CSF monoamine metabolites were significantly increased after treatment and correlated with regional receptor occupancies in the putamen [DOPAC: (p<0.01) and HVA: (p<0.05)], caudate nucleus [HVA: (p<0.01)], thalamus [MHPG: (p<0.05)] and in the temporal cortex [HVA: (p<0.05) and 5-HIAA: (p<0.05)]. This suggests that CSF monoamine metabolites levels reflect the effects of quetiapine treatment on neurotransmitters in vivo and indicates that monitoring plasma and CSF quetiapine and norquetiapine levels may be of clinical relevance.
Resumo:
The risk of infection after type III° open fractures is high (10-50%).Preemptive antibiotic therapy may prevent posttraumatic infection andimprove the outcome. Recommendations about the type and durationof antibiotic vary among the institutions and it remains unclear whethergram-negative bacilli or anaerobs need to be covered. In Europe, themost commonly recommended antibiotic is amoxicillin/clavulanic acid.We retrospectively analyzed microbiology, characteristics and outcomeof patients with open type III° fractures treated at our institution.Methods: Between 01/2005 and 12/2009 we retrospectively includedall type III grade open fractures of the leg at our institution classifiedafter Gustilo into type IIIA, IIIB and IIIC. Demographic characteristics,clinical presentation, microbiology, surgical and antibiotic treatmentand patient outcome were recorded using a standardized case-reportform.Results: 30 cases of patients with type III° open fractures wereincluded (25 males, mean age was 40.5 years, range 17-67 years).27 fractures (90%) were located on the lower leg and 3 (10%) on theupper leg. Microbiology at initial surgery was available for 19 cases(63%), of which 10 grew at least one organism (including 8 amoxicillin/clavulanic acid-resistant gram-negative bacilli [GNB], 7 amoxicillin/clavulanic acid-resistant Bacillus cereus), 11 were culture-negative.Preemptive antibiotics were given in all cases (100%) for an averageduration of 8.5 days (range 1-53 days), the most common antibioticwas amoxicillin/clavulanic acid in 60% (n = 18). 11 cases just receivedpreemptive antibiotic treatment, in 19 of 30 cases the antibiotic therapywas changed and prolonged. Microbiology at revision surgery wasavailable for 25 cases and 22 grew at least one pathogen (including32 amoxicillin/clavulanic acid-resistant gram-negative bacilli and 10amoxicillin/clavulanic acid-resistant Bacillus cereus), 3 were culturenegative.Conclusions: At initial surgery, most common isolated organismswere coagulase-negative staphylococci (43%), Bacillus cereus (23%),and gram-negative bacilli (27%), and others (7%) of which 48% wereresistant to amoxicillin/clavulanic acid. At revision surgery, isolatedorganisms were gram-negative bacilli (64%), Bacillus cereus (20%),and others (16%) of which 88% were resistant to amoxicillin/clavulanicacid. The spectrum of amoxicillin/clavulanic does not cover the mostcommon isolated organisms.FM32
Resumo:
The immunopathophysiologic development of systemic autoimmunity involves numerous factors through complex mechanisms that are not fully understood. In systemic lupus erythematosus, type I IFN (IFN-I) produced by plasmacytoid dendritic cells (pDCs) critically promotes the autoimmunity through its pleiotropic effects on immune cells. However, the host-derived factors that enable abnormal IFN-I production and initial immune tolerance breakdown are largely unknown. Previously, we found that amyloid precursor proteins form amyloid fibrils in the presence of nucleic acids. Here we report that nucleic acid-containing amyloid fibrils can potently activate pDCs and enable IFN-I production in response to self-DNA, self-RNA, and dead cell debris. pDCs can take up DNA-containing amyloid fibrils, which are retained in the early endosomes to activate TLR9, leading to high IFNα/β production. In mice treated with DNA-containing amyloid fibrils, a rapid IFN response correlated with pDC infiltration and activation. Immunization of nonautoimmune mice with DNA-containing amyloid fibrils induced antinuclear serology against a panel of self-antigens. The mice exhibited positive proteinuria and deposited antibodies in their kidneys. Intriguingly, pDC depletion obstructed IFN-I response and selectively abolished autoantibody generation. Our study reveals an innate immune function of nucleic acid-containing amyloid fibrils and provides a potential link between compromised protein homeostasis and autoimmunity via a pDC-IFN axis.
Resumo:
This study investigated concentrations of quetiapine and norquetiapine in plasma and cerebrospinal fluid (CSF) in 22 schizophrenic patients after 4-week treatment with quetiapine (600 mg/d), which was preceded by a 3-week washout period. Blood and CSF samples were obtained on days 1 and 28, and CSF levels of homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) concentrations were measured at baseline and after 4 weeks of quetiapine, allowing calculations of differences in HVA (ΔHVA), 5-HIAA (Δ5-HIAA), and MHPG (ΔMHPG) concentrations. Patients were assessed clinically, using the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression Scale at baseline and then at weekly intervals. Plasma levels of quetiapine and norquetiapine were 1110 ± 608 and 444 ± 226 ng/mL, and the corresponding CSF levels were 29 ± 18 and 5 ± 2 ng/mL, respectively. After the treatment, the levels of HVA, 5-HIAA, and MHPG were increased by 33%, 35%, and 33%, respectively (P < 0.001). A negative correlation was found between the decrease in PANSS positive subscale scores and CSF ΔHVA (r(rho) = -0.690, P < 0.01), and the decrease in PANSS negative subscale scores both with CSF Δ5-HIAA (r(rho) = -0.619, P = 0.02) and ΔMHPG (r(rho) = -0.484, P = 0.038). Because, unfortunately, schizophrenic patients experience relapses even with the best available treatments, monitoring of CSF drug and metabolite levels might prove to be useful in tailoring individually adjusted treatments.
Resumo:
OBJECTIVE: Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic beta-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation. RESEARCH DESIGN AND METHODS: We analyzed miRNA expression in insulin-secreting cell lines or pancreatic islets exposed to palmitate for 3 days and in islets from diabetic db/db mice. We studied the signaling pathways triggering the changes in miRNA expression and determined the impact of the miRNAs affected by palmitate on insulin secretion and apoptosis. RESULTS: Prolonged exposure of the beta-cell line MIN6B1 and pancreatic islets to palmitate causes a time- and dose-dependent increase of miR34a and miR146. Elevated levels of these miRNAs are also observed in islets of diabetic db/db mice. miR34a rise is linked to activation of p53 and results in sensitization to apoptosis and impaired nutrient-induced secretion. The latter effect is associated with inhibition of the expression of vesicle-associated membrane protein 2, a key player in beta-cell exocytosis. Higher miR146 levels do not affect the capacity to release insulin but contribute to increased apoptosis. Treatment with oligonucleotides that block miR34a or miR146 activity partially protects palmitate-treated cells from apoptosis but is insufficient to restore normal secretion. CONCLUSIONS: Our findings suggest that at least part of the detrimental effects of palmitate on beta-cells is caused by alterations in the level of specific miRNAs.