4 resultados para Accumulation rate per year, biogenic silica
em Université de Lausanne, Switzerland
Resumo:
The Permian Chert Event (PCE) was a 30 Ma long episode of unusual chert accumulation along the northwest margin of Pangea, and possibly worldwide. The onset of the PCE occurred at about the Sakmarian-Artinskian boundary in the Sverdrup Basin, Canadian Arctic, where it coincides with a maximum flooding event, the ending of high-frequency/high-amplitude shelf cyclicity, the onset of massive biogenic chert deposition in deep-water distal areas, and a long-term shift from warm- to cool-water carbonate sedimentation in shallow-water proximal areas. A similar and coeval shift is observed from the Barents Sea to the northwestern USA. A landward and southward expansion of silica factories occurred during the Middle and Late Permian at which time warm-water carbonate producers disappeared completely from the northwest margin of Pangea. Biotically impoverished and increasingly narrow cold-water carbonate factories (characterised by non-cemented bioclasts of sponges, bryozoans, echinoderms and brachiopods) were then progressively replaced by silica factories. By Late Permian time, little carbonate sediments accumulated in the Barents Sea and in the Sverdrup Basin. where the deep- to shallow-water sedimentary spectrum was occupied by siliceous sponge spicules. By that time, biogenic silica sedimentation was common throughout the world. Silica factories collapsed in the Late Permian, abruptly bringing the PCE to an end. In northwest Pangea, the end- Permian collapse of the PCE was associated with a major transgression and with a return to much warmer oceanic and continental climatic conditions. Chert deposition resumed in the distal oceanic areas during the early Middle Triassic (Anisian) after a 8-10 Ma interruption (Early Triassic Chert Gap). The conditions necessary for the onset, expansion and zenith of the PCE were provided by the thermohaline circulation of nutrient-rich cold waters along the northwestern and western margin of Pangea, and possibly throughout the world oceans. These conditions provided an efficient transportation mechanism that constantly replenished the supply of silica in the area, created a nutrient- and oxygen-rich environment favouring siliceous biogenic productivity. established cold sea-floor conditions, hindering silica dissolution, while increasing calcium carbonate solubility, and provided conditions adverse to organic and inorganic carbonate production, The northwest margin of Pangea was, for nearly 30 Ma. bathed by cold waters presumably derived from the seasonal melting of northern sea ice, the assumed engine for thermohaline circulation. This process started near the Sakmarian-Artinskian boundary. intensified throughout Middle and Late Permian time and ceased suddenly in latest Permian time, It led to oceanic conditions much colder than normally expected from the palaeolatitudes. and the influence of cold northerly-derived water was felt as far south southern Nevada. The demise of silica factories was caused by the rapid breakdown of these conditions and the establishment of a much warmer marine environment accompanied by sluggish circulation and perhaps a reduced input of dissolved silica to the ocean. Complete thawing of northern sea ice would have ended thermohaline circulation and led to warm and sluggish oceanic conditions inimical to the production. accumulation and preservation of biogenic silica.
Resumo:
While several risk factors for the histological progression of chronic hepatitis C have been identified, the contribution of HCV genotypes to liver fibrosis evolution remains controversial. The aim of the present study was to assess independent predictors for fibrosis progression. Methods: We identified 1540 patients from the Swiss Hepatitis C Cohort database with at least one liver biopsy prior to antiviral treatment. Factors associated with fibrosis stage, steatosis and histological activity were assessed in univariate and multivariate regression models. Fibrosis progression rate per year was calculated in a subgroup of 1263 patients, in whom risk factors were assessed by cumulative incidence curves, logistic and linear regression models. Results: Independent risk factors for rapid fibrosis progression included male sex (OR = 1.66, 95% CI 1.25-2.21, P <0.001), age at infection (OR = 1.08, 95% CI 1.06-1.10, P <0.001), histological activity (OR = 2.14, 95% CI 1.61-2.85, P <0.001) and genotype 3 (OR = 1.97, 95% CI 1.43-2.72, P <0.001). Genotype 2 was associated with slow progression (OR = 0.51, 95% CI 0.30-0.89, P = 0.02), but this observation may be due to the decreased prevalence of genotype 2 over the last decades, leading to an overrepresentation of subjects with genotype 2 with a slow progression rate. Conclusion: This study shows a significant association of genotype 3 with accelerated fibrosis. While assessing risk factors for fibrosis progression, the changing epidemiology of HCV genotypes over time needs to be taken into account.
Resumo:
Background/Purpose: Gouty arthritis (GA) is a chronic inflammatory disease. Targeting the inflammatory pathway through IL-1_ inhibition with canakinumab (CAN) may provide significant long-term benefits. CAN safety versus triamcinolone acetonide (TA) over initial 24 weeks (blinded study) for patients (pts) with history of frequent attacks (_3 in year before baseline) was reported earlier from core (_-RELIEVED [_-REL] and _-REL-II) and first extension (E1) studies1. Herein we present full 18-month long-term CAN safety data, including open-label second extension (E2) studies. Methods: GA pts completing _-REL E1 and _-REL-II E1 studies1 were enrolled in these 1-year, open-label, E2 studies. All pts entering E2, whether randomized to CAN or TA, received CAN 150 mg sc on demand upon new attack. Data are presented only for pts randomized to CAN, and are reported cumulatively, i.e. including corresponding data from previously reported core and E1 studies. Long-term safety outcomes and safety upon re-treatment are presented as incidence rate per 100 patient-years (pyr) of study participation for AEs and SAEs. Deaths are reported for all pts (randomized to CAN or TA). Selected predefined notable laboratory abnormalities are shown (neutrophils, platelets, liver and renal function tests). Long-term attack rate per year is also provided. Results: In total, 69/115 (60%) and 72/112 (64.3%) of the pts randomized to CAN in the two core studies entered the two E2 studies, of which 68 and 64 pts, respectively completed the E2 studies. The 2 study populations had differing baseline comorbidity and geographic origin. Lab data (not time adjusted) for neutropenia appears worse after retreatment in _-REL E2, and deterioration of creatinine clearance appears worse after retreatment (Table 1). The time-adjusted incidence rates for AEs were 302.4/100 pyr and 360/100 pyr, and for SAEs were 27.9/100 pyr and 13.9/100 pyr in _-REL E2 and _-REL-II E2 respectively (Table 1). The time-adjusted incidence rates of any AEs, infection AEs, any SAEs, and selected SAEs before and after re-treatment are presented in Table 1. Incidence rates for AEs and SAEs declined after re-treatment, with the exception of SAEs in _-REL-II E2, which increased from 2.9/100 pyr to 10.9/100 pyr (no infection SAEs after retreatment in _-REL-II E2, and other SAEs fit no special pattern). In the total safety population (N_454, core and all extensions), there were 4 deaths, 2 in the core studies previously reported1 and 2 during the _-REL E2 study (one patient in the CAN group died from pneumonia; one patient in the TA group who never received CAN died of pneumococcal sepsis). None of the deaths was suspected by investigators to be study drug related. The mean rates of new attacks per year on CAN were 1.21 and 1.18 in _-REL E2 and in _-REL-II E2. Conclusion: The clinical safety profile of CAN upon re-treatment was maintained long-term with no new infection concerns
Resumo:
Purpose: The aim of this study was to evaluate the clinical fracture rate of crowns fabricated with the pressable, leucite-reinforced ceramic IPS Empress, and relate the results to the type of tooth restored. Materials and Methods: The database SCOPUS was searched for clinical studies involving full-coverage crowns made of IPS Empress. To assess the fracture rate of the crowns in relation to the type of restored tooth and study, Poisson regression analysis was used. Results: Seven clinical studies were identified involving 1,487 adhesively luted crowns (mean observation time: 4.5 +/- 1.7 years) and 81 crowns cemented with zinc-phosphate cement (mean observation time: 1.6 +/- 0.8 years). Fifty-seven of the adhesively luted crowns fractured (3.8%). The majority of fractures (62%) occurred between the third and sixth year after placement. There was no significant influence regarding the test center on fracture rate, but the restored tooth type played a significant role. The hazard rate (per year) for crowns was estimated to be 5 in every 1,000 crowns for incisors, 7 in every 1,000 crowns for premolars, 12 in every 1,000 crowns for canines, and 16 in every 1,000 crowns for molars. One molar crown in the zinc-phosphate group fractured after 1.2 years. Conclusion: Adhesively luted IPS Empress crowns showed a low fracture rate for incisors and premolars and a somewhat higher rate for molars and canines. The sample size of the conventionally luted crowns was too small and the observation period too short to draw meaningful conclusions. Int J Prosthodont 2010;23:129-133.