45 resultados para Abrasion by strength
em Université de Lausanne, Switzerland
Resumo:
The theory of language has occupied a special place in the history of Indian thought. Indian philosophers give particular attention to the analysis of the cognition obtained from language, known under the generic name of śābdabodha. This term is used to denote, among other things, the cognition episode of the hearer, the content of which is described in the form of a paraphrase of a sentence represented as a hierarchical structure. Philosophers submit the meaning of the component items of a sentence and their relationship to a thorough examination, and represent the content of the resulting cognition as a paraphrase centred on a meaning element, that is taken as principal qualificand (mukhyaviśesya) which is qualified by the other meaning elements. This analysis is the object of continuous debate over a period of more than a thousand years between the philosophers of the schools of Mimāmsā, Nyāya (mainly in its Navya form) and Vyākarana. While these philosophers are in complete agreement on the idea that the cognition of sentence meaning has a hierarchical structure and share the concept of a single principal qualificand (qualified by other meaning elements), they strongly disagree on the question which meaning element has this role and by which morphological item it is expressed. This disagreement is the central point of their debate and gives rise to competing versions of this theory. The Mïmāmsakas argue that the principal qualificand is what they call bhāvanā ̒bringing into being̒, ̒efficient force̒ or ̒productive operation̒, expressed by the verbal affix, and distinct from the specific procedures signified by the verbal root; the Naiyāyikas generally take it to be the meaning of the word with the first case ending, while the Vaiyākaranas take it to be the operation expressed by the verbal root. All the participants rely on the Pāninian grammar, insofar as the Mimāmsakas and Naiyāyikas do not compose a new grammar of Sanskrit, but use different interpretive strategies in order to justify their views, that are often in overt contradiction with the interpretation of the Pāninian rules accepted by the Vaiyākaranas. In each of the three positions, weakness in one area is compensated by strength in another, and the cumulative force of the total argumentation shows that no position can be declared as correct or overall superior to the others. This book is an attempt to understand this debate, and to show that, to make full sense of the irreconcilable positions of the three schools, one must go beyond linguistic factors and consider the very beginnings of each school's concern with the issue under scrutiny. The texts, and particularly the late texts of each school present very complex versions of the theory, yet the key to understanding why these positions remain irreconcilable seems to lie elsewhere, this in spite of extensive argumentation involving a great deal of linguistic and logical technicalities. Historically, this theory arises in Mimāmsā (with Sabara and Kumārila), then in Nyāya (with Udayana), in a doctrinal and theological context, as a byproduct of the debate over Vedic authority. The Navya-Vaiyākaranas enter this debate last (with Bhattoji Dïksita and Kaunda Bhatta), with the declared aim of refuting the arguments of the Mïmāmsakas and Naiyāyikas by bringing to light the shortcomings in their understanding of Pāninian grammar. The central argument has focused on the capacity of the initial contexts, with the network of issues to which the principal qualificand theory is connected, to render intelligible the presuppositions and aims behind the complex linguistic justification of the classical and late stages of this debate. Reading the debate in this light not only reveals the rationality and internal coherence of each position beyond the linguistic arguments, but makes it possible to understand why the thinkers of the three schools have continued to hold on to three mutually exclusive positions. They are defending not only their version of the principal qualificand theory, but (though not openly acknowledged) the entire network of arguments, linguistic and/or extra-linguistic, to which this theory is connected, as well as the presuppositions and aims underlying these arguments.
Resumo:
A structural and functional analysis of the 5'-end region of the Xenopus laevis vitellogenin gene A1 revealed two transcription initiation sites located 1.8 kilobases apart. A RNA polymerase II binding assay indicates that both promoters form initiation complexes efficiently. In vitro, using a transcription assay derived from a HeLa whole-cell extract, the upstream promoter is more than 10-fold stronger than the downstream one. In contrast, both promoters have a similar strength in a HeLa nuclear extract. In vivo, that is in estrogen-stimulated hepatocytes, it is the downstream promoter homologous to the one used by the other members of the vitellogenin gene family, which is 50-fold stronger than the upstream promoter. Thus, if functional vitellogenin mRNA results from this latter activity, it would contribute less than 1% to the synthesis of vitellogenin by fully induced Xenopus hepatocytes expressing the four vitellogenin genes. In contrast, both gene A1 promoters are silent in uninduced hepatocytes. Transfection experiments using the Xenopus cell line B3.2 in which estrogen-responsiveness has been introduced reveal that the strong downstream promoter is controlled by an estrogen responsive element (ERE) located 330 bp upstream of it. The upstream promoter can also be controlled by the same ERE. Since the region comprising the upstream promoter is flanked by a 200 base pair long inverted repeat with stretches of homology to other regions of the X. laevis genome, we speculate that it might have been inserted upstream of the vitellogenin gene A1 by a recombination event and consequently brought under control of the ERE lying 1.5 kilobases downstream.
Resumo:
Astrocytes play active roles in brain physiology by dynamic interactions with neurons. Connexin 30, one of the two main astroglial gap-junction subunits, is thought to be involved in behavioral and basic cognitive processes. However, the underlying cellular and molecular mechanisms are unknown. We show here in mice that connexin 30 controls hippocampal excitatory synaptic transmission through modulation of astroglial glutamate transport, which directly alters synaptic glutamate levels. Unexpectedly, we found that connexin 30 regulated cell adhesion and migration and that connexin 30 modulation of glutamate transport, occurring independently of its channel function, was mediated by morphological changes controlling insertion of astroglial processes into synaptic clefts. By setting excitatory synaptic strength, connexin 30 plays an important role in long-term synaptic plasticity and in hippocampus-based contextual memory. Taken together, these results establish connexin 30 as a critical regulator of synaptic strength by controlling the synaptic location of astroglial processes.
Resumo:
Previous studies showed a fetal sheep liver extract (FSLE), in association with monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS), could interact to induce the development of dendritic cells (DCs) which regulated production of Foxp3+ Treg. This interaction was associated with an altered gene expression both of distinct subsets of TLRs and of CD200Rs. Prior studies had suggested that major interacting components within FSLE were gamma-chain of fetal hemoglobin (Hgbgamma) and glutathione (GSH). We investigated whether differentiation/maturation of DCs in vitro in the presence of either GM-CSF or Flt3L to produce preferentially either immunogenic or tolerogenic DCs was itself controlled by an interaction between MPLA, GSH and Hgbgamma. At low (approximately 10 microg/ml) Hgbgamma concentrations, DCs developing in culture with GSH and MPLA produced optimal stimulation of allogeneic CTL cell responses in vitro (and enhanced skin graft rejection in vivo). At higher concentrations (>40 microg/ml Hgbgamma) and equivalent concentrations of MPLA and GSH, the DCs induce populations of Treg which can suppress the induction of allogeneic CTL and graft rejection in vivo. These different populations of DCs express different patterns of mRNAs for the CD200R family. Addition of anti-TLR or anti-MD-1 mAbs to DCs developing in this mixture (Hgbgamma+GSH+MPLA), suggests that one effect of (GSH+Hgbgamma) on MPLA stimulation may involve altered signaling through TLR4.
Resumo:
Cytosolic acetyl-CoA is involved in the synthesis of a variety of compounds, including waxes, sterols and rubber, and is generated by the ATP citrate lyase (ACL). Plants over-expressing ACL were generated in an effort to understand the contribution of ACL activity to the carbon flux of acetyl-CoA to metabolic pathways occurring in the cytosol. Transgenic Arabidopsis plants synthesizing the polyester polyhydroxybutyrate (PHB) from cytosolic acetyl-CoA have reduced growth and wax content, consistent with a reduction in the availability of cytosolic acetyl-CoA to endogenous pathways. Increasing the ACL activity via the over-expression of the ACLA and ACLB subunits reversed the phenotypes associated with PHB synthesis while maintaining polymer synthesis. PHB production by itself was associated with an increase in ACL activity that occurred in the absence of changes in steady-state mRNA or protein level, indicating a post-translational regulation of ACL activity in response to sink strength. Over-expression of ACL in Arabidopsis was associated with a 30% increase in wax on stems, while over-expression of a chimeric homomeric ACL in the laticifer of roots of dandelion led to a four- and two-fold increase in rubber and triterpene content, respectively. Synthesis of PHB and over-expression of ACL also changed the amount of the cutin monomer octadecadien-1,18-dioic acid, revealing an unsuspected link between cytosolic acetyl-CoA and cutin biosynthesis. Together, these results reveal the complexity of ACL regulation and its central role in influencing the carbon flux to metabolic pathways using cytosolic acetyl-CoA, including wax and polyisoprenoids.
Resumo:
Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses.
Resumo:
Although polychlorinated biphenyls (PCBs) have been banned in many countries for more than three decades, exposures to PCBs continue to be of concern due to their long half-lives and carcinogenic effects. In National Institute for Occupational Safety and Health studies, we are using semiquantitative plant-specific job exposure matrices (JEMs) to estimate historical PCB exposures for workers (n = 24,865) exposed to PCBs from 1938 to 1978 at three capacitor manufacturing plants. A subcohort of these workers (n = 410) employed in two of these plants had serum PCB concentrations measured at up to four times between 1976 and 1989. Our objectives were to evaluate the strength of association between an individual worker's measured serum PCB levels and the same worker's cumulative exposure estimated through 1977 with the (1) JEM and (2) duration of employment, and to calculate the explained variance the JEM provides for serum PCB levels using (3) simple linear regression. Consistent strong and statistically significant associations were observed between the cumulative exposures estimated with the JEM and serum PCB concentrations for all years. The strength of association between duration of employment and serum PCBs was good for highly chlorinated (Aroclor 1254/HPCB) but not less chlorinated (Aroclor 1242/LPCB) PCBs. In the simple regression models, cumulative occupational exposure estimated using the JEMs explained 14-24% of the variance of the Aroclor 1242/LPCB and 22-39% for Aroclor 1254/HPCB serum concentrations. We regard the cumulative exposure estimated with the JEM as a better estimate of PCB body burdens than serum concentrations quantified as Aroclor 1242/LPCB and Aroclor 1254/HPCB.
Resumo:
Introduction: Although the pig is a standard model for the evaluation of various diseases in humans, including coagulopathy, it is not clear whether results in animals can be extrapolated to man.Materials and methods: In 75 anesthetized pigs, we assessed reagent-supported thrombelastometry (ExTEM (R)), platelet-blocked thrombelastometry (FibTEM (R)), and aprotinin thrombelastometry (ApTEM (R)). Results were compared to values from 13 anesthetized humans.Results (median, 95% CI): ExTEM (R) : While clot strength was comparable in pigs (66 mm, 65-67 mm) and in humans (64 mm, 60-68 mm; NS), clotting time in animals was longer (pigs 64 s, 62-66 s; humans 55 s, 49-71 s; P<0.05) and clot formation time shorter (pigs 52 s, 49-54 s; humans 83 s, 67-98 s, P<0.001). The clot lysis index at 30 minutes was lower in animals (96.9%, 95.1-97.3%) than in humans (99.5%, 98.6-99.9%; P<0.001). ApTEM (R) showed no hyperfibrinolysis in animals. Modification of the anesthesia protocol in animals resulted in significant ExTEM (R) changes. FibTEM (R) : Complete platelet inhibition yielded significantly higher platelet contribution to clot strength in pigs (79%, 76-81%) than in humans (73%, 71-77%; P<0.05), whereas fibrinogen contribution to clot strength was higher in humans (27%, 24-29%) than in animals (21%, 19-24%; P<0.05).Conclusions: Maximum clot firmness is comparable in human and porcine blood. However, clot lysis, platelet and fibrinogen contribution to clot strength, as well as initiation and propagation of clotting, are considerably different between pigs and humans. In addition, anesthesic drugs seem to influence thrombelastometry in animals. Accordingly, coagulation abnormalities in pigs subjected to diseases may not necessarily represent the coagulation profile in sick patients. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: Activity monitoring is considered a highly relevant outcome measure of respiratory rehabilitation. This study aimed to assess the usefulness of a new accelerometric method for characterization of walking activity during a 3-week inpatient rehabilitation program. METHODS: After individual calibration of the accelerometer at different walking speeds, whole-day physical activity was recorded for 15 patients with chronic obstructive pulmonary disease on the first and the last days of the program, and for 10 healthy subjects. Data were expressed as percentage of time spent in inactivity, low level activity, and medium level activity, with the latter corresponding to usual walking speed. RESULTS: The patients spent more time being inactive and less time walking than healthy subjects. At the end of the rehabilitation program, medium level activity had increased from 4% to 7% of total recording time. However, the change was not significant after periods of imposed exercise training were excluded. Walking activity increased to a greater degree among the patients with preserved limb muscle strength at entry to the program. Although health status scores improved, the changes did not correlate with the changes in walking activity. CONCLUSION: The findings lead to the conclusion that this new accelerometric method provides detailed analysis of walking activity during respiratory rehabilitation and may represent an additional useful measure of outcome.
Resumo:
OBJECTIVE: To investigate the relationships between isokinetic knee flexor and extensor muscle strength and physiological and chronological age in young soccer players. MATERIAL AND METHODS: Seventy-nine young, healthy, male soccer players (mean+/-standard deviation age: 12.78+/-2.88, range: 11 to 15) underwent a clinical examination (age, weight, height, body mass index and Tanner puberty stage) and an evaluation of bilateral knee flexor and extensor muscle strength on an isokinetic dynamometer. Participation in the study was voluntary. RESULTS: The peak torque increased progressively (by 50%) between the ages of 11 and 15 and most significantly between 12 to 14. The knee flexor/extensor ratios only decreased significantly between 14 and 15 years of age. Puberty stage was the most important determinant of the peak torque level (ahead of chronological age, weight and height) for all angular velocities (p<0.0001). Muscle strength increased significantly between Tanner stages 1 and 5, with the greatest increase between stages 2 and 4. CONCLUSION: The present study showed that isokinetic muscle strength increases most between 12 and 13 years of age and between Tanner stages 2 and 3. There was strong correlation between muscle strength and physiological age.
Resumo:
In many experimental models, CD4+CD25+Foxp3+ regulatory T cells (nTreg) have been identifi ed as key players in promoting peripheral transplantation (Tx) tolerance. We have been focusing on therapies based on antigen-specifi c nTreg that can control effector T cells (Teff) and prevent allograft rejection. The use of nTreg in immunotherapeutic protocols for solid organ Tx is however limited by their overall low numbers as well as the low precursor frequency of alloantigen cross-reactive nTreg expected to be found in a normal individual. Moreover, although we previously described robust protocols to generate and expand antigen-specifi c nTreg in vitro, the process requires careful selection of highly pure nTreg and cumbersome ex-vivo manipulations, rendering this strategy not easily applicable in clinical solid organ Tx. In this study, we aimed to expand Treg directly in vivo and determine their suppressive function, effi cacy and stability in promoting donor-specifi c tolerance in a stringent murine Tx model. Our data suggest that IL-2-based therapies lead to a signifi cant increase of Treg in vivo. The expanded Treg suppressed Teff proliferation (albeit slightly less effi ciently than nTreg isolated from control mice) and allowed prolonged graft survival of major MHC-mismatched skin grafts in wild-type non-lymphopenic recipients. The expanded Treg alone were however not suffi cient to induce tolerance in stringent experimental conditions. Rapamycin reduced the frequency of Teff but did not impede expansion of Treg. Pro-infl ammatory stimuli hindered the expansion of Treg and resulted in an increase in the frequency of CD4+IFN-γ+ and CD4+IL17+ T cells. We propose that IL-2-based treatments would be an effi cient method for expanding functional Treg in vivo without affecting other immune cell populations, thereby favorably shifting the pool of alloreactive T cells towards regulation in response to an allograft. However, we also highlight some potential limitations of Treg expansion such as concomitant infl ammatory events.
Resumo:
In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets.
Resumo:
BACKGROUND: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography (MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. PURPOSE: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. MATERIAL AND METHODS: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 to 5) techniques. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at C3-C4 and C6-C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. RESULTS: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at C3-C4 and C6-C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ≤ 0.03). Conversely, for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001). CONCLUSION: The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended.
Resumo:
1. Melanin pigments provide the most widespread source of coloration in vertebrates, but the adaptive function of such traits remains poorly known. 2. In a wild population of tawny owls (Strix aluco), we investigated the relationships between plumage coloration, which varies continuously from dark to pale reddish, and the strength and cost of an induced immune response. 3. The degree of reddishness in tawny owl feather colour was positively correlated with the concentration of phaeomelanin and eumelanin pigments, and plumage coloration was highly heritable (h(2) = 0.93). No carotenoids were detected in the feathers. 4. In mothers, the degree of melanin-based coloration was associated with antibody production against a vaccine, with dark reddish females maintaining a stronger level of antibody for a longer period of time compared to pale reddish females, but at a cost in terms of greater loss of body mass. 5. A cross-fostering experiment showed that, independent of maternal coloration, foster chicks reared by vaccinated mothers were lighter than those reared by nonvaccinated mothers. Hence, even though dark reddish mothers suffered a stronger immune cost than pale reddish mothers, this asymmetric cost was not translated to offspring growth. 6. Our study suggests that different heritable melanin-based colorations are associated with alternative strategies to resist parasite attacks, with dark reddish individuals investing more resources towards the humoral immune response than lightly reddish conspecifics.