203 resultados para AT1 RECEPTORS
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: In mice, a partial loss of function of the epithelial sodium channel (ENaC), which regulates sodium excretion in the distal nephron, causes pseudohypoaldosteronism, a salt-wasting syndrome. The purpose of the present experiments was to examine how alpha ENaC knockout heterozygous (+/-) mice, which have only one allele of the gene encoding for the alpha subunit of ENaC, control their blood pressure (BP) and sodium balance. METHODS: BP, urinary electrolyte excretion, plasma renin activity, and urinary adosterone were measured in wild-type (+/+) and heterozygous (+/-) mice on a low, regular, or high sodium diet. In addition, the BP response to angiotensin II (Ang II) and to Ang II receptor blockade, and the number and affinity of Ang II subtype 1 (AT1) receptors in renal tissue were analyzed in both mouse strains on the three diets. RESULTS: In comparison with wild-type mice (+/+), alpha ENaC heterozygous mutant mice (+/-) showed an intact capacity to maintain BP and sodium balance when studied on different sodium diets. However, no change in plasma renin activity was found in response to changes in sodium intake in alpha ENaC +/- mice. On a normal salt diet, heterozygous mice had an increased vascular responsiveness to exogenous Ang II (P < 0.01). Moreover, on a normal and low sodium intake, these mice exhibited an increase in the number of AT1 receptors in renal tissues; their BP lowered markedly during the Ang II receptor blockade (P < 0.01) and there was a clear tendency for an increase in urinary aldosterone excretion. CONCLUSIONS: alpha ENaC heterozygous mice have developed an unusual mechanism of compensation leading to an activation of the renin-angiotensin system, that is, the up-regulation of AT1 receptors. This up-regulation may be due to an increase in aldosterone production.
Resumo:
BACKGROUND: Depending on its magnitude, lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal, renal tubular, and renal hemodynamic responses, thereby mimicking the renal responses observed in clinical conditions characterized by a low effective arterial volume such as congestive heart failure. Our objective was to evaluate the impact of angiotensin II receptor blockade with candesartan on the renal hemodynamic and urinary excretory responses to a progressive orthostatic stress in normal subjects. METHODS: Twenty healthy men were submitted to three levels of LBNP (0, -10, and -20 mbar or 0, -7.5, and -15 mm Hg) for 1 hour according to a crossover design with a minimum of 2 days between each level of LBNP. Ten subjects were randomly allocated to receive a placebo and ten others were treated with candesartan 16 mg orally for 10 days before and during the three levels of LBNP. Systemic and renal hemodynamics, renal sodium excretions, and the hormonal response were measured hourly before, during, and for 2 hours after LBNP. RESULTS: During placebo, LBNP induced no change in systemic and renal hemodynamics, but sodium excretion decreased dose dependently with higher levels of LBNP. At -20 mbar, cumulative 3-hour sodium balance was negative at -2.3 +/- 2.3 mmol (mean +/- SEM). With candesartan, mean blood pressure decreased (76 +/- 1 mm Hg vs. 83 +/- 3 mm Hg, candesartan vs. placebo, P < 0.05) and renal plasma flow increased (858 +/- 52 mL/min vs. 639 +/- 36 mL/min, candesartan vs. placebo, P < 0.05). Glomerular filtration rate (GFR) was not significantly higher with candesartan (127 +/- 7 mL/min in placebo vs. 144 +/- 12 mL/min in candesartan). No significant decrease in sodium and water excretion was found during LBNP in candesartan-treated subjects. At -20 mbar, the 3-hour cumulative sodium excretion was + 4.6 +/- 1.4 mmol in the candesartan group (P= 0.02 vs. placebo). CONCLUSION: Selective blockade of angiotensin II type 1 (AT1) receptors with candesartan increases renal blood flow and prevents the antinatriuresis during sustained lower body negative pressure despite a modest decrease in blood pressure. These results thus provide interesting insights into potential benefits of AT1 receptor blockade in sodium-retaining states such as congestive heart failure.
Resumo:
OBJECTIVE: The goal of this study was to investigate whether angiotensin II receptor blockers (ARBs) induce a comparable blockade of AT1 receptors in the vasculature and in the kidney when the renin-angiotensin system is activated by a thiazide diuretic. METHOD: Thirty individuals participated in this randomized, controlled, single-blind study. The blood pressure and renal hemodynamic and tubular responses to a 1-h infusion of exogenous angiotensin II (Ang II 3 ng/kg per min) were investigated before and 24 h after a 7-day administration of either irbesartan 300 mg alone or in association with 12.5 or 25 mg hydrochlorothiazide (HCTZ). Irbesartan 300/25 mg was also compared with losartan 100 mg, valsartan 160 mg, and olmesartan 20 mg all in association with 25 mg HCTZ. Each participant received two treatments with a 1-week washout period between treatments. RESULTS: The blood pressure response to Ang II was blocked by more than 90% with irbesartan alone or in association with HCTZ and with olmesartan/HCTZ and by nearly 60% with valsartan/HCTZ and losartan/HCTZ (P < 0.05). In the kidney, Ang II reduced renal plasma flow by 36% at baseline (P < 0.001). Irbesartan +/- HCTZ and olmesartan/HCTZ blocked the renal hemodynamic response to Ang II nearly completely, whereas valsartan/HCTZ and losartan/HCTZ only blunted this effect by 34 and 45%, respectively. At the tubular level, Ang II significantly reduced urinary volume (-84%) and urinary sodium excretion (-65%) (P < 0.01). These tubular effects of Ang II were only partially blunted by the administration of ARBs. CONCLUSION: These data demonstrate that ARBs prescribed at their recommended doses do not block renal tubular AT1 receptors as effectively as vascular receptors do. This observation may account for the need of higher doses of ARB for renal protection. Moreover, our results confirm that there are significant differences between ARBs in their capacity to induce a sustained vascular and tubular blockade of Ang II receptors.
Resumo:
Tasosartan is a long-acting angiotensin II (AngII) receptor blocker. Its long duration of action has been attributed to its active metabolite enoltasosartan. In this study we evaluated the relative contribution of tasosartan and enoltasosartan to the overall pharmacological effect of tasosartan. AngII receptor blockade effect of single doses of tasosartan (100 mg p.o. and 50 mg i.v) and enoltasosartan (2.5 mg i.v.) were compared in 12 healthy subjects in a randomized, double blind, three-period crossover study using two approaches: the in vivo blood pressure response to exogenous AngII and an ex vivo AngII radioreceptor assay. Tasosartan induced a rapid and sustained blockade of AngII subtype-1 (AT1) receptors. In vivo, tasosartan (p.o. or i.v.) blocked by 80% AT1 receptors 1 to 2 h after drug administration and still had a 40% effect at 32 h. In vitro, the blockade was estimated to be 90% at 2 h and 20% at 32 h. In contrast, the blockade induced by enoltasosartan was markedly delayed and hardly reached 60 to 70% despite the i.v. administration and high plasma levels. In vitro, the AT1 antagonistic effect of enoltasosartan was markedly influenced by the presence of plasma proteins, leading to a decrease in its affinity for the receptor and a slower receptor association rate. The early effect of tasosartan is due mainly to tasosartan itself with little if any contribution of enoltasosartan. The antagonistic effect of enoltasosartan appears later. The delayed in vivo blockade effect observed for enoltasosartan appears to be due to a high and tight protein binding and a slow dissociation process from the carrier.
Resumo:
Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.
Resumo:
This study was conducted to assess the pharmacologic properties of the new orally active angiotensin II subtype I (AT1) antagonist UR-7247, a product with a half-life >100 h in humans. The experiment was designed as an open-label, single-dose administration study with four parallel groups of four healthy men receiving increasing single oral doses (2.5, 5, and 10 mg) of UR-7247 or losartan, 100 mg. Angiotensin II receptor blockade was investigated < or =96 h after drug intake, with three independent methods [i.e., the inhibition of blood pressure (BP) response to exogenous Ang II, an in vitro Ang II-receptor assay (RRA), and the reactive increase in plasma angiotensin II. Plasma drug levels also were measured. The degree of blockade observed in vivo was statistically significant < or = 96 h with all UR-7247 doses for diastolic BP (p < 0.05) and < or =48 h for systolic BP. The maximal inhibition achieved with 10 mg UR-7247 was measured 6-24 h after drug intake and reached 54 +/- 17% and 48 +/- 20% for diastolic and systolic responses, respectively. Losartan, 100 mg, induced a greater short-term AT1-receptor blockade than 2.5- and 5.0-mg doses of UR-7247 (p < 0.001 for diastolic BP), but the UR-7247 effect was longer lasting. In vivo, no significant difference was observed between 10 mg UR-7247 and 100 mg losartan 4 h after drug intake, but in vitro, the blockade achieved with 100 mg losartan was higher than that seen with UR-7247. Finally, the results confirm that UR-7247 has a very long plasma elimination half-life, which may be due to a high but also tight binding to protein binding sites. In conclusion, UR-7247 is a long-lasting, well-tolerated AT1 receptor in healthy subjects.
Resumo:
RESUME : L'athérosclérose, pathologie inflammatoire artérielle chronique, est à l'origine de la plupart des maladies cardiovasculaires qui constituent l'une des premières causes de morbidité et mortalité en France. Les études observationnelles et expérimentales montrent que l'exercice physique prévient la mortalité cardiovasculaire. Cependant, les mécanismes précisant les bénéfices cliniques de l'exercice sur l'athérosclérose sont encore largement inconnus. Le but général de ce travail a donc été d'explorer, en utilisant un modèle expérimental d'athérosclérose, la souris hypercholestérolémique génétiquement dépourvue en apolipoprotéine E (apoE-/-), les mécanismes athéroprotecteurs de l'exercice. La dysfonction endothéliale, généralement associée aux facteurs de risque cardiovasculaire, serait l'une des étapes précoces majeures de l'athérogenèse. Elle est caractérisée par une diminution de la biodisponibilité en monoxyde d'azote (NO) avec la perte de ses propriétés vasculo-protectrices, ce qui favorise un climat pro-athérogène (stress oxydatif, adhésion et infiltration des cellules inflammatoires dans la paroi artérielle...) conduisant à la formation de la plaque athéromateuse. L'objectif de notre premier travail a donc été d'explorer les effets de l'exercice d'une part, sur le développement des plaques athéromateuses et d'autre part, sur la fonction endothéliale de la souris apoE-/-. Nos résultats montrent que l'exercice réduit significativement l'extension de l'athérosclérose et prévient la dysfonction endothéliale. L'explication pharmacologique montre que l'exercice stimule la fonction endothéliale via, notamment, une plus grande sensibilité des récepteurs endothéliaux muscariniques, ce qui active les événements signalétiques cellulaires récepteurs-dépendants à l'origine d'une bioactivité accrue de NO. Les complications cliniques graves de l'athérosclérose sont induites par la rupture de la plaque instable provoquant la formation d'un thrombus occlusif et l'ischémie du territoire tissulaire en aval. L'objectif de notre deuxième travail a été d'examiner l'effet de l'exercice sur la qualité/stabilité de la plaque. Nos résultats indiquent que l'exercice de longue durée stabilise la plaque en augmentant le nombre de cellules musculaires lisses et en diminuant le nombre de macrophages intra-plaques. Nos résultats montrent aussi que la phosphorylation de la eNOS (NO Synthase endothéliale) Akt-dépendante n'est pas le mécanisme moléculaire majeur à l'origine de ce bénéfice. Enfin, dans notre troisième travail, nous avons investigué l'effet de l'exercice sur le développement de la plaque vulnérable. Nos résultats montrent, chez un modèle murin de plaque instable (modèle d'hypertension rénovasculaire à rénine et angiotensine II élevés) que l'exercice prévient l'apparition de la plaque vulnérable indépendamment d'un effet hémodynamique. Ce bénéfice serait associé à une diminution de l'expression vasculaire des récepteurs AT1 de l'Angiotensine II. Nos résultats justifient l'importance de l'exercice comme outil préventif des maladies cardiovasculaires. ABSTRACT : Atherosclerosis, a chronic inflammatory disease, is one of the main causes of morbidity and mortality in France. Observational and experimental data indicate that regular physical exercise has a positive impact on cardiovascular mortality. However, the mechanisms by which exercise exerts clinical benefits on atherosclerosis are still unknown. The general aim of this work was to elucidate the anti-atherosclerotic effects of exercise, using a mouse model of atherosclerosis: the apolipoprotein E-deficient mice (apoE-/- mice). Endothelial dysfunction, generally associated with cardiovascular risk factors, has been recognized to be a major and early step in atherogenesis. Endothelial dysfunction is characterized by Nitric Oxide (NO) biodisponibility reduction with loss of NO-mediated vasculoprotective actions. This leads to vascular effects such as increased oxidative stress and increased adhesion of inflammatory cells into arterial wall thus playing a role in atherosclerotic plaque development. Therefore, one of the objective of our study was to explore the effects of exercise on atherosclerotic plaque extension and on endothelial function in apoE-/- mice. Results show that exercise significantly reduces plaque progression and prevents endothelial dysfunction. Pharmacological explanation indicates that exercise stimulates endothelial function by increasing muscarinic receptors sensitivity which in turn activates intracellular signalling receptor-dependent events leading to increased NO bioactivity. The clinical manifestations of atherosclerosis are the consequences of unstable plaque rupture with thrombus formation leading to tissue ischemia. The second aim of our work was to determine the effect of exercise on plaque stability. We demonstrate that long-term exercise stabilizes atherosclerotic plaques as shown by decreased macrophage and increased Smooth Muscle Cells plaque content. Our results also suggest that the Akt-dependent eNOS phosphorylation pathway is not the primary molecular mechanism mediating these beneficial effects. Finally, we assessed a putative beneficial effect of exercise on vulnerable plaque development. In a mouse model of Angiotensine II (Ang II)-mediated vulnerable atherosclerotic plaques, we provide fist evidence that exercise prevents atherosclerosis progression and plaque vulnerability. The beneficial effect of swimming was associated with decreased aortic Ang II AT1 receptor expression independently from any hemodynamic change. These findings suggest clinical benefit of exercise in terms of cardiovascular event protection.
Resumo:
It was found recently that locomotor and rewarding effects of psychostimulants and opiates were dramatically decreased or suppressed in mice lacking alpha1b-adrenergic receptors [alpha1b-adrenergic receptor knock-outs (alpha1bAR-KOs)] (Drouin et al., 2002). Here we show that blunted locomotor responses induced by 3 and 6 mg/kg d-amphetamine in alpha1bAR-KO mice [-84 and -74%, respectively, when compared with wild-type (WT) mice] are correlated with an absence of d-amphetamine-induced increase in extracellular dopamine (DA) levels in the nucleus accumbens of alpha1bAR-KO mice. Moreover, basal extracellular DA levels in the nucleus accumbens are lower in alpha1bAR-KO than in WT littermates (-28%; p < 0.001). In rats however, prazosin, an alpha1-adrenergic antagonist, decreases d-amphetamine-induced locomotor hyperactivity without affecting extracellular DA levels in the nucleus accumbens, a finding related to the presence of an important nonfunctional release of DA (Darracq et al., 1998). We show here that local d-amphetamine releases nonfunctional DA with the same affinity but a more than threefold lower amplitude in C57BL6/J mice than in Sprague Dawley rats. Altogether, this suggests that a trans-synaptic mechanism amplifies functional DA into nonfunctional DA release. Our data confirm the presence of a powerful coupling between noradrenergic and dopaminergic neurons through the stimulation of alpha1b-adrenergic receptors and indicate that nonfunctional DA release is critical in the interpretation of changes in extracellular DA levels. These results suggest that alpha1b-adrenergic receptors may be important therapeutic pharmacological targets not only in addiction but also in psychosis because most neuroleptics possess anti-alpha1-adrenergic properties.
Resumo:
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins secreted in response to oral glucose ingestion by intestinal L and K cells, respectively. The molecular mechanisms responsible for intestinal cell glucose sensing are unknown but could be related to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1 content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion and an impaired glucose tolerance in all mice. In conclusion, both incretins secretion depends on mechanisms involving their own receptors and GLP-1 further requires GLUT2.
Resumo:
Clinical and experimental evidence suggests that synovial thrombin formation in arthritic joints is prominent and deleterious, leading to exacerbation of rheumatoid arthritis (RA). In this context, cellular effects of thrombin mediated by the protease-activated receptors (PARs) in arthritic joints may be of paramount significance. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin whereas PAR2 is activated by trypsin and few other proteases.We first explored PARs expression in RA synovial tissues. Synovial membranes from 11 RA patients were analyzed for PARs expression by RT-PCR and by immunohistology. PAR4 was found in all the biopsies, whereas the expression of PAR1, PAR 2 and PAR3 was more restricted (8/11, 5/11 and 3/11 respectively). In the arthritic synovial membrane of murine antigen-induced arthritis (AIA) we found coexpression of the four different PARs. Next, we explored the functional importance of PAR1 during AIA in vivo using PAR-1 deficient mice. The phenotype of PAR1-deficient mice (n = 22), based on the analysis of arthritis severity (as measured by 99 m tecnetium uptake, histological scoring and intra-articular fibrin measurements) was similar to that of wild-type mice (n = 24). In addition, the in vivo production of antibodies against mBSA was also similar. By contrast, the mBSA-induced in vitro lymph node cell proliferation was significantly decreased in PAR1-deficient mice as compared with controls. Accordingly, mBSA-induced production of interferon-γ by lymph node cells in culture was significantly decreased in PAR1-deficient mice as compared with controls, whereas opposite results were observed for production of IL-10.
Resumo:
AbstractThe vertebrate immune system is composed of the innate and the adaptive branches. Innate immune cells represent the first line of defense and detect pathogens through pattern recognition receptors (PRRs), detecting evolutionary conserved pathogen- and danger- associated molecular patterns. Engagement of these receptors initiates the inflammatory response, but also instructs antigen-specific adaptive immune cells. NOD-like receptors (NLRs) are an important group of PRRs, leading to the production of inflammatory mediators and favoring antigen presentation to Τ lymphocytes through the regulation of major histocompatibility complex (MHC) molecules.In this work we focused our attention on selected NOD-like receptors (NLRs) and their role at the interface between innate and adaptive immunity. First, we describe a new regulatory mechanism controlling IL-1 production. Our results indicate that type I interferons (IFNs) block NLRP1 and NLRP3 inflammasome activity and interfere with LPS-driven proIL-Ια and -β induction. As type I IFNs are produced upon viral infections, these anti-inflammatory effects of type I IFN could be relevant in the context of superinfections, but could also help explaining the efficacy of IFN-β in multiple sclerosis treatment.The second project addresses the role of a novel NLR family member, called NLRC5. The function of this NLR is still matter of debate, as it has been proposed as both an inhibitor and an activator of different inflammatory pathways. We found that the expression of this protein is restricted to immune cells and is positively regulated by IFNs. We generated Nlrc5-deficient mice and found that this NLR plays an essential role in Τ, NKT and, NK lymphocytes, in which it drives the expression of MHC class I molecules. Accordingly, we could show that CD8+ Τ cell-mediated killing of target lymphocytes lacking NLRC5 is strongly impaired. Moreover, NLRC5 expression was found to be low in many lymphoid- derived tumor cell lines, a mechanism that could be exploited by tumors to escape immunosurveillance.Finally, we found NLRC5 to be involved in the production of IL-10 by CD4+ Τ cells, as Nlrc5- deficient Τ lymphocytes produced less of this cytokine upon TCR triggering. In line with these observations, Mrc5-deficient CD4+ Τ cells expanded more than control cells when transferred into lymphopenic hosts and led to a more rapid appearance of colitis symptoms. Therefore, our work gives novel insights on the function of NLRC5 by using knockout mice, and strongly supports the idea that NLRs direct not only innate, but also adaptive immune responses.
Resumo:
After peripheral nerve injury in adult mammals, reestablishment of functional connections depends on several parameters including neurotrophic factors, the extracellular matrix, and hormones. However, little is known about the contribution of hormones to peripheral nerve regeneration. Thyroid hormones, which are required for the development and maturation of the central nervous system, are also important for the development of peripheral nerves. The action of triiodothyronine (T3) on responsive cells is mediated through nuclear thyroid hormone receptors (TRs) which modulate the expression of specific genes in target cells. Thus, to study the effect of T3, it is first necessary to know whether the target tissues possess TRs. The fact that sciatic nerve cells possess functional TRs suggests that these cells can respond to T3 and, as a consequence, that thyroid hormone may be involved in peripheral nerve regeneration. The silicone nerve guide model provides an excellent system to study the action of local administration of T3. Evidence from such studies demonstrate that animals treated locally with T3 at the level of transection have more complete regeneration of sciatic nerve and better functional recovery. Among the possible regulatory mechanisms by which T3 enhances peripheral nerve regeneration is rapid action on both axotomized neurons and Schwann cells which, in turn, produce a lasting and stimulatory effect on peripheral nerve regeneration. It is probable that T3 up- or down-regulates gene expression of one or more growth factors, extracellular matrix, or cell adhesion molecules, all of which stimulate peripheral nerve regeneration. This could explain the greater effect of T3 on nerve regeneration compared with the effect of any one growth factor or adhesion molecule.