3 resultados para AROMATIC POLYAMIDE
em Université de Lausanne, Switzerland
Resumo:
Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24-7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5-119.8 ng m(-3) during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure.
Resumo:
The exposure to dust and polynuclear aromatic hydrocarbons (PAH) of 15 truck drivers from Geneva, Switzerland, was measured. The drivers were divided between "long-distance" drivers and "local" drivers and between smokers and nonsmokers and were compared with a control group of 6 office workers who were also divided into smokers and nonsmokers. Dust was measured on 1 workday both by a direct-reading instrument and by sampling. The local drivers showed higher exposure to dust (0.3 mg/m3) and PAH than the long-distance drivers (0.1 mg/m3), who showed no difference with the control group. This observation may be due to the fact that the local drivers spend more time in more polluted areas, such as streets with heavy traffic and construction sites, than do the long-distance drivers. Smoking does not influence exposure to dust and PAH of professional truck drivers, as measured in this study, probably because the ventilation rate of the truck cabins is relatively high even during cold days (11-15 r/h). The distribution of dust concentrations was shown in some cases to be quite different from the expected log-normal distribution. The contribution of diesel exhaust to these exposures could not be estimated since no specific tracer was used. However, the relatively low level of dust exposure dose not support the hypothesis that present day levels of diesel exhaust particulates play a significant role in the excess occurrence of lung cancer observed in professional truck drivers.