209 resultados para ANTIMICROBIAL EFFICACY
em Université de Lausanne, Switzerland
Efficacy of trovafloxacin in treatment of experimental staphylococcal or streptococcal endocarditis.
Resumo:
The efficacy of trovafloxacin against Staphylococcus aureus and viridans group streptococci was investigated in vitro and in an experimental model of endocarditis. The MICs at which trovafloxacin and ciprofloxacin inhibited 90% of clinical isolates of such bacteria (MIC90s) were (i) 0.03 and 2 mg/liter, respectively, for 30 ciprofloxacin-susceptible S. aureus isolates, (ii) 32 and 128 mg/liter, respectively, for 20 ciprofloxacin-resistant S. aureus isolates, and (iii) 0.25 and 8 mg/liter, respectively, for 28 viridans group streptococci. Rats with aortic vegetations were infected with either of two ciprofloxacin-susceptible but methicillin-resistant S. aureus strains (strains COL and P8), one penicillin-susceptible Streptococcus sanguis strain, or one penicillin-resistant Streptococcus mitis strain. Rats were treated for 3 or 5 days with doses that resulted in kinetics that simulated those achieved in humans with trovafloxacin (200 mg orally once a day), ciprofloxacin (750 mg orally twice a day), vancomycin (1 g intravenously twice a day), or ceftriaxone (2 g intravenously once a day). Against the staphylococci, the activities of both trovafloxacin and ciprofloxacin were equivalent to that of vancomycin, and treatment of endocarditis with these drugs was successful (P < 0.05). However, ciprofloxacin selected for resistant derivatives in vitro and in vivo, whereas trovafloxacin was 10 to 100 times less prone than ciprofloxacin to select for resistance in vitro and did not select for resistance in vivo. Against the two streptococcal isolates, trovafloxacin significantly (P < 0.05) decreased bacterial counts in the vegetations but was less effective than the control drug, ceftriaxone. Thus, a simulated oral dose of trovafloxacin (200 mg per day) was effective against ciprofloxacin-susceptible staphylococci and was less likely than ciprofloxacin to select for resistance. The simulated oral dose of trovafloxacin also had some activity against streptococcal endocarditis, but optimal treatment of infections caused by such organisms might require higher doses of the drug.
Resumo:
Y-688 is a new fluoroquinolone with increased activity against ciprofloxacin-resistant staphylococci. The MICs of Y-688 and other quinolones were determined for 58 isolates of ciprofloxacin-resistant and methicillin-resistant Staphylococcus aureus (MRSA). The MICs at which 50% and 90% of bacteria were inhibited were >/=128 and >/=128 mg/liter, respectively, for ciprofloxacin, 16 and 32 mg/liter, respectively, for sparfloxacin, and 0.25 and 1 mg/liter, respectively, for Y-688. This new quinolone was further tested in rats with experimental endocarditis due to either of two isolates of ciprofloxacin-resistant MRSA (namely, P8/128 and CR1). Infected animals were treated for 3 days with ciprofloxacin, vancomycin, or Y-688. Antibiotics were administered through a computerized pump to simulate human-like pharmacokinetics in the serum of rats. The anticipated peak and trough levels of Y-688 were 4 and 1 mg/liter at 0.5 and 12 h, respectively. Treatment with ciprofloxacin was ineffective. Vancomycin significantly decreased vegetation bacterial counts for both organisms (P less, similar 0.05). In contrast, Y-688 only marginally decreased vegetation bacterial counts (P greater, similar 0.05). Moreover, several vegetation that failed Y-688 treatment grew staphylococci for which the MICs of the test antibiotic were increased two to eight times. Y-688 also selected for resistance in vitro, and isolates for which the MICs were increased eight times emerged at a frequency of ca. 10(-8). Thus, in spite of its low MIC for ciprofloxacin-resistant MRSA, Y-688 failed in vivo and its use carried the risk of resistance selection. The fact that ciprofloxacin-resistant staphylococci became rapidly resistant to this potent new drug suggests that the treatment of ciprofloxacin-resistant MRSA with new quinolones might be more problematic than expected.
Resumo:
Iclaprim is a novel diaminopyrimidine antibiotic that is active against methicillin-resistant Staphylococcus aureus (MRSA). However, it is known that the activity of diaminopyrimidines against S. aureus is antagonized by thymidine through uptake and conversion to thymidylate by thymidine kinase. Unlike with humans, for whom thymidine levels are low, thymidine levels in rodents are high, thus precluding the accurate evaluation of iclaprim efficacy in animal models. We have studied the bactericidal activity of iclaprim against an isogenic pair of MRSA isolates, the wild-type parent AW6 and its thymidine kinase-deficient mutant AH1252, in an in vitro fibrin clot model. Clots, which were aimed at mimicking vegetation structure, were made from human or rat plasma containing either the parent AW6 or the mutant AH1252, and they were exposed to homologous serum supplemented with iclaprim (3.5 microg/ml), trimethoprim-sulfamethoxazole (TMP-SMX; 8/40 microg/ml), vancomycin (40 microg/ml), or saline, each of which was added one time for 48 h. In rat clots, iclaprim and TMP-SMX were bacteriostatic against the parent, AW6. In contrast, they were bactericidal (> or = 3 log10 CFU/clot killing of the original inoculum) against the mutant AH1252. Vancomycin was the most active drug against AW6 (P < 0.05), but it showed an activity similar those of iclaprim and TMP-SMX against AH1252. In human clots, iclaprim was bactericidal against both AW6 and AH1252 strains and was as effective as TMP-SMX and vancomycin (P > 0.05). Future studies of animals using simulated human kinetics of iclaprim and thymidine kinase-deficient MRSA, which eliminate the thymidine-induced confounding effect, are warranted to support the use of iclaprim in the treatment of severe MRSA infections in humans.
Resumo:
Background : Port-related bloodstream infection (PRBSI) is a common complication associated with long-term use of ports systems. Systemic antimicrobial therapy (ST) and removal of the device is the standard management of PRBSI. However, a conservative management combining ST with antibiotic lock therapy (ALT) without port removal has been suggested as an alternative management option for infections due to gram-positive skin colonizers with low virulence.¦Objectives : i) to assess the frequency of management of PRBSI in onco-hematological patients by combining the ALT with ST, without catheter removal and ii) to analyze the efficacy of such an approach.¦Methods : Retrospective observational study over a 6-year period between 2005 and 2010, including patients who where diagnosed with PRBSI and who were treated with ST and ALT. PRBSI diagnosis consisted in clinical signs of bacteremia with blood cultures positive for gram-positive skin colonizers. The primary endpoint was failure to cure the PRBSI.¦Results : 61 port infections were analysed, of which 23 PRBSI met the inclusion criteria. All the patients were suffering from haematological conditions and 75% were neutropenic at the time of PRBSI diagnosis. S. epidermidis was responsible for 91% of PRBSI (21/23). The median duration of ST was 14 days (range 7-35) and the median duration of ALT was 15 days (range 8-41). Failure to cure the PRBSI requiring port removal was observed in 4 patients, but was not associated with severe infectious complications. Kaplan-Meier analysis showed a success rate in port salvage at day 180 (6 months) of 78% (95%CI 59-97%).¦Conclusion : The success rate observed in the present study suggests that combining ST and ALT is an effective option to conservatively treat PRBSI caused by pathogens of low virulence such as S. epidermidis.
Resumo:
OBJECTIVES: Daptomycin was tested in vitro and in rats with experimental endocarditis against the ampicillin-susceptible and vancomycin-susceptible Enterococcus faecalis JH2-2, the vancomycin-resistant (VanA type) mutant of strain JH2-2 (strain JH2-2/pIP819), and the ampicillin-resistant and vancomycin-resistant (VanB type) Enterococcus faecium D366. METHODS: Rats with catheter-induced aortic vegetations were treated with doses simulating intravenously kinetics in humans of daptomycin (6 mg/kg every 24 h), amoxicillin (2 g every 6 h), vancomycin (1 g every 12 h) or teicoplanin (12 mg/kg every 12 h). Treatment was started 16 h post-inoculation and continued for 2 days. RESULTS: MICs of daptomycin were 1, 1 and 2 mg/L, respectively, for strains JH2-2, JH2-2/pIP819 and D366. In time-kill studies, daptomycin showed rapid (within 2 h) bactericidal activity against all strains. Daptomycin was highly bound to rat serum proteins (89%). In the presence of 50% rat serum, simulating free concentrations, daptomycin killing was maintained but delayed (6-24 h). In vivo, daptomycin treatment resulted in 10 of 12 (83%), 9 of 11 (82%) and 11 of 12 (91%) culture-negative vegetations in rats infected with strains JH2-2, JH2-2/pIP819 and D366, respectively (P < 0.001 compared to controls). Daptomycin efficacy was comparable to that of amoxicillin and vancomycin for susceptible isolates. Daptomycin, however, was significantly (P < 0.05) more effective than teicoplanin against the glycopeptide-susceptible strain JH2-2 and superior to all comparators against resistant isolates. CONCLUSIONS: These results support the use of the newly proposed daptomycin dose of 6 mg/kg every 24 h for treatment of enterococcal infections in humans.
Resumo:
Clarithromycin is compared with clindamycin for single-dose prophylaxis of streptococcal endocarditis in rats. Human-like kinetics of the two antibiotics prevented endocarditis in animals challenged with both small and large amounts of bacterial inocula. Clarithromycin was marginally superior to clindamycin against small amounts of inocula. Clarithromycin may be considered for endocarditis chemoprophylaxis in human.
Resumo:
The activity of garenoxacin was investigated in rats with experimental endocarditis due to staphylococci and viridans group streptococci (VGS). The staphylococci tested comprised one ciprofloxacin-susceptible and methicillin-susceptible Staphylococcus aureus (MSSA) isolate (isolate 1112), one ciprofloxacin-susceptible but methicillin-resistant S. aureus (MRSA) isolate (isolate P8), and one ciprofloxacin-resistant mutant (grlA) of P8 (isolate P8-4). The VGS tested comprised one penicillin-susceptible isolate and one penicillin-resistant isolate (Streptococcus oralis 226 and Streptococcus mitis 531, respectively). To simulate the kinetics of drugs in humans, rats were infused intravenously with garenoxacin every 24 h (peak and trough levels in serum, 6.1 and 1.0 mg/liter, respectively; area under the concentration-time curve [AUC], 63.4 mg. h/liter) or levofloxacin every 12 h (peak and trough levels in serum, 7.3 and 1.5 mg/liter, respectively; AUC, 55.6 mg. h/liter) for 3 or 5 days. Flucloxacillin, vancomycin, and ceftriaxone were used as control drugs. Garenoxacin, levofloxacin, flucloxacillin, and vancomycin sterilized >/=70% of the vegetations infected with both ciprofloxacin-susceptible staphylococcal isolates (P < 0.05 versus the results for the controls). Garenoxacin and vancomycin also sterilized 70% of the vegetations infected with ciprofloxacin-resistant MRSA isolate P8-4, whereas treatment with levofloxacin failed against this organism (cure rate, 0%; P < 0.05 versus the results obtained with the comparator drugs). Garenoxacin did not select for resistant derivatives in vivo. In contrast, levofloxacin selected for resistant variants in four of six rats infected with MRSA isolate P8-4. Garenoxacin sterilized 90% of the vegetations infected with both penicillin-susceptible and penicillin-resistant isolates of VGS. Levofloxacin sterilized only 22 and 40% of the vegetations infected with penicillin-susceptible S. oralis 226 and penicillin-resistant S. mitis 531, respectively. Ceftriaxone sterilized only 40% of those infected with penicillin-resistant S. mitis 531 (P < 0.05 versus the results obtained with garenoxacin). No quinolone-resistant VGS were detected. In all the experiments successful quinolone treatment was predicted by specific pharmacodynamic criteria (D. R. Andes and W. A. Craig, Clin. Infect. Dis. 27:47-50, 1998). The fact that the activity of garenoxacin was equal or superior to those of the standard comparators against staphylococci and VGS indicates that it is a potential alternative for the treatment of infections caused by such bacteria.
Resumo:
Limited treatment options are available for implant-associated infections caused by methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). We compared the activity of daptomycin (alone and with rifampin [rifampicin]) with the activities of other antimicrobial regimens against MRSA ATCC 43300 in the guinea pig foreign-body infection model. The daptomycin MIC and the minimum bactericidal concentration in logarithmic phase and stationary growth phase of MRSA were 0.625, 0.625, and 20 microg/ml, respectively. In time-kill studies, daptomycin showed rapid and concentration-dependent killing of MRSA in stationary growth phase. At concentrations above 20 microg/ml, daptomycin reduced the counts by >3 log(10) CFU/ml in 2 to 4 h. In sterile cage fluid, daptomycin peak concentrations of 23.1, 46.3, and 53.7 microg/ml were reached 4 to 6 h after the administration of single intraperitoneal doses of 20, 30, and 40 mg/kg of body weight, respectively. In treatment studies, daptomycin alone reduced the planktonic MRSA counts by 0.3 log(10) CFU/ml, whereas in combination with rifampin, a reduction in the counts of >6 log(10) CFU/ml was observed. Vancomycin and daptomycin (at both doses) were unable to cure any cage-associated infection when they were given as monotherapy, whereas rifampin alone cured the infections in 33% of the cages. In combination with rifampin, daptomycin showed cure rates of 25% (at 20 mg/kg) and 67% (at 30 mg/kg), vancomycin showed a cure rate of 8%, linezolid showed a cure rate of 0%, and levofloxacin showed a cure rate of 58%. In addition, daptomycin at a high dose (30 mg/kg) completely prevented the emergence of rifampin resistance in planktonic and adherent MRSA cells. Daptomycin at a high dose, corresponding to 6 mg/kg in humans, in combination with rifampin showed the highest activity against planktonic and adherent MRSA. Daptomycin plus rifampin is a promising treatment option for implant-associated MRSA infections.
Resumo:
Levofloxacin was investigated against viridans group streptococci in vitro and in rats with experimental aortic endocarditis. The MIC(90)s of levofloxacin and ciprofloxacin for 20 independent isolates of such bacteria were 1 and 8 mg/L, respectively. Rats were infected with two types of organism: either fully susceptible to levofloxacin MIC < or = 0.5 mg/L) or borderline susceptible (MIC 1-2 mg/L). Fully levofloxacin-susceptible bacteria comprised one penicillin-susceptible (MIC 0.004 mg/L) Streptococcus gordonii, and one penicillin-tolerant as well as one intermediate penicillin-resistant (MIC 0.125 mg/L) isogenic strains. Borderline levofloxacin-susceptible bacteria comprised one penicillin-susceptible Streptococcus sanguis and one highly penicillin-resistant Streptococcus mitis (MIC 2 mg/L). Rats were treated for 5 days with drug dosages simulating the following treatments in humans: (i) levofloxacin 500 mg orally once a day (q24 h), (ii) levofloxacin 500 mg orally twice a day (q12 h), (iii) levofloxacin 1 g orally q24 h, (iv) ciprofloxacin 750 mg orally q12 h, and (v) ceftriaxone 2 g iv q24 h. Levofloxacin was equivalent or superior to ceftriaxone, and was successful in treating experimental endocarditis irrespective of penicillin resistance. Nevertheless, standard levofloxacin treatment equivalent to 500 mg q24 h in human was less effective than twice daily 500 mg or once daily 1 g doses against borderline-susceptible organisms. Ciprofloxacin, used as a negative control, was ineffective and selected for resistant isolates. This underlines the importance of MIC determinations when treating severe streptococcal infection with quinolones. In the case of borderline-susceptible pathogens, total daily doses of 1 g of levofloxacin should be considered.
Resumo:
The efficacy and safety of anti-infective treatments are associated with the drug blood concentration profile, which is directly correlated with a dosing adjustment to the individual patient's condition. Dosing adjustments to the renal function recommended in reference books are often imprecise and infrequently applied in clinical practice. The recent generalisation of the KDOQI (Kidney Disease Outcome Quality Initiative) staging of chronically impaired renal function represents an opportunity to review and refine the dosing recommendations in patients with renal insufficiency. The literature has been reviewed and compared to a predictive model of the fraction of drug cleared by the kidney based on the Dettli's principle. Revised drug dosing recommendations integrating these predictive parameters are proposed.
Resumo:
Rapport de synthèse1. Partie de laboratoireCette première étude décrit le développement et la validation, selon les standards internationaux, de deux techniques de mesure des concentrations sanguines de voriconazole, un nouvel agent antifongique à large spectre: 1) la chromatographic en phase liquide à haute pression et 2) le bio-essai utilisant une souche mutante de Candida hypersensible au voriconazole. Ce travail a aussi permis de mettre en évidence une importante et imprévisible variabilité inter- et intra-individuelle des concentrations sanguines de voriconazole malgré l'utilisation des doses recommandées par le fabriquant. Ce travail a été publié dans un journal avec "peer-review": "Variability of voriconazole plasma levels measured by new high- performance liquid chromatography and bioassay methods" by A. Pascual, V. Nieth, T. Calandra, J. Bille, S. Bolay, L.A. Decosterd, T. Buclin, P.A. Majcherczyk, D. Sanglard, 0. Marchetti. Antimicrobial Agents Chemotherapy, 2007; 51:137-432. Partie CliniqueCette deuxième étude a évalué de façon prospective l'impact clinique des concentrations sanguines de voriconazole sur l'efficacité et sécurité thérapeutique chez des patients atteints d'infections fongiques. Des concentrations sanguines élevées étaient significativement associés à la survenue d'une toxicité neurologique (encéphalopathie avec confusion, hallucinations et myoclonies) et des concentrations sanguines basses à une réponse insuffisante au traitement antifongique (persistance ou progression des signes cliniques et radiologiques de l'infection). Dans la majorité des cas, un ajustement de la dose de voriconazole, sur la base des concentrations mesurées, a abouti à une récupération neurologique complète ou à une résolution de l'infection, respectivement. Ce travail a été publié dans un journal avec "peer-review": " Voriconazole Therapeutic Drug Monitoring in Patients with Invasive Mycoses Improves Efficacy and Safety Outcomes" by A. Pascual, T. Calandra, S. Bolay, T. Buclin, J. Bille, and O. Marchetti. Clinical Infectious Diseases, 2008 January 15; 46(2): 201-11.Ces deux études, financées de façon conjointe par un "grant" international de la Société suisse d'infectiologie et la Société internationale de maladies infectieuses et par la Fondation pour le progrès en microbiologie médicale et maladies infectieuses (FAMMID, Lausanne), ont été réalisées au sein du Service des Maladies Infectieuses, Département de Médecine, au CHUV, en étroite collaboration avec la Division de Pharmacologie Clinique, Département de Médecine, au CHUV et l'Institut de Microbiologie du CHUV et de l'Université de Lausanne.
Resumo:
BACKGROUND: The most recommended NRTI combinations as first-line antiretroviral treatment for HIV-1 infection in resource-rich settings are tenofovir/emtricitabine, abacavir/lamivudine, tenofovir/lamivudine and zidovudine/lamivudine. Efficacy studies of these combinations also considering pill numbers, dosing frequencies and ethnicities are rare. METHODS: We included patients starting first-line combination ART (cART) with or switching from first-line cART without treatment failure to tenofovir/emtricitabine, abacavir/lamivudine, tenofovir/lamivudine and zidovudine/lamivudine plus efavirenz or nevirapine. Cox proportional hazards regression was used to investigate the effect of the different NRTI combinations on two primary outcomes: virological failure (VF) and emergence of NRTI resistance. Additionally, we performed a pill burden analysis and adjusted the model for pill number and dosing frequency. RESULTS: Failure events per treated patient for the four NRTI combinations were as follows: 19/1858 (tenofovir/emtricitabine), 9/387 (abacavir/lamivudine), 11/344 (tenofovir/lamivudine) and 45/1244 (zidovudine/lamivudine). Compared with tenofovir/emtricitabine, abacavir/lamivudine had an adjusted HR for having VF of 2.01 (95% CI 0.86-4.55), tenofovir/lamivudine 2.89 (1.22-6.88) and zidovudine/lamivudine 2.28 (1.01-5.14), whereas for the emergence of NRTI resistance abacavir/lamivudine had an HR of 1.17 (0.11-12.2), tenofovir/lamivudine 11.3 (2.34-55.3) and zidovudine/lamivudine 4.02 (0.78-20.7). Differences among regimens disappeared when models were additionally adjusted for pill burden. However, non-white patients compared with white patients and higher pill number per day were associated with increased risks of VF and emergence of NRTI resistance: HR of non-white ethnicity for VF was 2.85 (1.64-4.96) and for NRTI resistance 3.54 (1.20-10.4); HR of pill burden for VF was 1.41 (1.01-1.96) and for NRTI resistance 1.72 (0.97-3.02). CONCLUSIONS: Although VF and emergence of resistance was very low in the population studied, tenofovir/emtricitabine appears to be superior to abacavir/lamivudine, tenofovir/lamivudine and zidovudine/lamivudine. However, it is unclear whether these differences are due to the substances as such or to an association of tenofovir/emtricitabine regimens with lower pill burden.