5 resultados para AMBROSIA
em Université de Lausanne, Switzerland
Resumo:
1. This account presents information on all aspects of the biology of Ambrosia artemisiifolia L. (Common ragweed) that are relevant to understanding its ecology. The main topics are presented within the standard framework of the Biological Flora of the British Isles: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, history, and conservation, impacts and management. 2. Ambrosia artemisiifolia is a monoecious, wind-pollinated, annual herb native to North America whose height varies from 10 cm to 2.5 m according to environmental conditions. It has erect, branched stems and pinnately lobed leaves. Spike-like racemes of male capitula composed of staminate (male) florets terminate the stems, while cyme-like clusters of pistillate (female) florets are arranged in groups the axils of main and lateral stem leaves. 3. Seeds require prolonged chilling to break dormancy. Following seedling emergence in spring, the rate of vegetative growth depends on temperature, but development occurs over a wide thermal range. In temperate European climates, male and female flowers are produced from summer to early autumn (July to October). 4. Ambrosia artemisiifolia is sensitive to freezing. Late spring frosts kill seedlings and the first autumn frosts terminate the growing season. It has a preference for dry soils of intermediate to rich nutrient level. 5. Ambrosia artemisiifolia was introduced into Europe with seed imports from North America in the 19th century. Since World War II, it has become widespread in temperate regions of Europe and is now abundant in open, disturbed habitats as a ruderal and agricultural weed. 6. Recently, the N. American ragweed leaf beetle (Ophraella communa) has been detected in southern Switzerland and northern Italy. This species appears to have the capacity to substantially reduce growth and seed production of A. artemisiifolia. 7. In heavily infested regions of Europe, A. artemisiifolia causes substantial crop-yield losses and its copious, highly allergenic pollen creates considerable public health problems. There is consensus among models that climate change will allow its northward and up-hill spread in Europe.
Resumo:
The question of why some social systems have evolved close inbreeding is particularly intriguing given expected short- and long-term negative effects of this breeding system. Using social spiders as a case study, we quantitatively show that the potential costs of avoiding inbreeding through dispersal and solitary living could have outweighed the costs of inbreeding depression in the origin of inbred spider sociality. We further review the evidence that despite being favored in the short term, inbred spider sociality may constitute in the long run an evolutionary dead end. We also review other cases, such as the naked mole rats and some bark and ambrosia beetles, mites, psocids, thrips, parasitic ants, and termites, in which inbreeding and sociality are associated and the evidence for and against this breeding system being, in general, an evolutionary dead end.
Resumo:
How do plants that move and spread across landscapes become branded as weeds and thereby objects of contention and control? We outline a political ecology approach that builds on a Lefebvrian understanding of the production of space, identifying three scalar moments that make plants into 'weeds' in different spatial contexts and landscapes. The three moments are: the operational scale, which relates to empirical phenomena in nature and society; the observational scale, which defines formal concepts of these phenomena and their implicit or explicit 'biopower' across institutional and spatial categories; and the interpretive scale, which is communicated through stories and actions expressing human feelings or concerns regarding the phenomena and processes of socio-spatial change. Together, these three scalar moments interact to produce a political ecology of landscape transformation, where biophysical and socio-cultural processes of daily life encounter formal categories and modes of control as well as emotive and normative expectations in shaping landscapes. Using three exemplar 'weeds' - acacia, lantana and ambrosia - our political ecology approach to landscape transformations shows that weeds do not act alone and that invasives are not inherently bad organisms. Humans and weeds go together; plants take advantage of spaces and opportunities that we create. Human desires for preserving certain social values in landscapes in contradiction to actual transformations is often at the heart of definitions of and conflicts over weeds or invasives.
Resumo:
Georgia is known for its extraordinary rich biodiversity of plants, which may now be threatened due to the spread of invasive alien plants (IAP). We aimed to identify (i) the most prominent IAP out of 9 selected potentially invasive and harmful IAP IAP by predicting thetheir distribution of 9 selected IAP under current and future climate conditions in Georgia as well as in its 43 Protected Areas, as a proxy for areas of high conservation value and (ii) the Protected Areas most at risk due to these IAP. We used species distribution models based on 6 climate variables and then filtered the obtained distributions based on maps of soil and vegetation types, and on recorded occurrences, resulting into the predicted ecological distribution of the 9 IAP's at a resolution of 1km2. We foundOur habitat suitability analysis showed that Ambrosia artemisiifolia, (24% and 40%) Robinia pseudoacaia (14% and 19%) and Ailanthus altissima (9% and 11%) have the largest potential distribution are the most abundant (predicted % area covered)d) IAP, with Ailanthus altissima the potentially most increasing one over the next fifty years (from 9% to 13% and from 11% to 25%), for Georgia and the Protected Areas, respectively. Furthermore, our results show indicate two areas in Georgia that are under specifically high threat, i.e. the area around Tbilisi and an area in the western part of Georgia (Adjara), both at lower altitudes. Our procedure to identify areas of high conservation value most at risk by IAP has been applied for the first time. It will help national authorities in prioritizing their measures to protect Georgia's outstanding biodiversity from the negative impact of IAP.
Resumo:
OBJECTIVE: The prevalence of ragweed allergy is increasing worldwide. Ragweed distribution and abundance is spreading in Europe in a wide area ranging from the Rhone valley in France to Hungary and Ukraine, where the rate of the prevalence can peak at as high as 12%. Low-grade ragweed colonisation was seen in Geneva and Ticino, less than two decades ago. There were fears that allergies to ragweed would increase Switzerland. The intent of this study was to assess the rate of prevalence of sensitisation and allergy to ragweed in the population living in the first rural Swiss setting where ragweed had been identified in 1996, and to evaluate indirectly the efficacy of elimination and containment strategies. MATERIAL AND METHODS: In 2009, 35 adults in a rural village in the Canton of Geneva were recruited. Data were collected by means of questionnaires and skin-prick tests were done on each participant. The study was approved by the local Ethics Committee. RESULTS: Based on questionnaires, 48.6% had rhinitis (95% confidence interval [CI] 32.9-64.4; n = 17/35) and 17.1% asthma (95% CI 8.1-32.6; n = 6/35). Atopy was diagnosed in 26.4% (95% CI 12.9-44.4) of the sample (n = 9/34). Ragweed sensitisation was found in 2.9% (95% CI 0.7-19.7; n = 1/34), mugwort sensitisation in 2.9% (95% CI 0.1-14.9; n = 1/35), alder sensitisation in 17.1% (95% CI 6.6-33.6; n = 6/35), ash sensitisation in 12.5% (95% CI 3.5-29.0; n = 4/32) and grass sensitisation in 22.9% (95% CI 10.4-40.1; n = 8/35). Ragweed (95% CI 0.1-14.9; n = 1/34) and mugwort allergies (95% CI 0.1-14.9; n = 1/35) were both found in 2.9% of the population. CONCLUSION: This study showed a surprisingly low incidence of ragweed sensitisation and allergy, of 2.9% and 2.9%, respectively, 20 years after the first ragweed detection in Geneva. The feared rise in ragweed allergy seems not to have happened in Switzerland, compared with other ragweed colonised countries. These results strongly support early field strategies against ragweed.