7 resultados para ALS-inhibitors

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The aim of this study was to evaluate the efficacy and tolerability of fulvestrant, an estrogen receptor antagonist, in postmenopausal women with hormone-responsive tumors progressing after aromatase inhibitor (AI) treatment. PATIENTS AND METHODS: This is a phase II, open, multicenter, noncomparative study. Two patient groups were prospectively considered: group A (n=70) with AI-responsive disease and group B (n=20) with AI-resistant disease. Fulvestrant 250 mg was administered as intramuscular injection every 28 (+/-3) days. RESULTS: All patients were pretreated with AI and 84% also with tamoxifen or toremifene; 67% had bone metastases and 45% liver metastases. Fulvestrant administration was well tolerated and yielded a clinical benefit (CB; defined as objective response or stable disease [SD] for >or=24 weeks) in 28% (90% confidence interval [CI] 19% to 39%) of patients in group A and 37% (90% CI 19% to 58%) of patients in group B. Median time to progression (TTP) was 3.6 (95% CI 3.0 to 4.8) months in group A and 3.4 (95% CI 2.5 to 6.7) months in group B. CONCLUSIONS: Overall, 30% of patients who had progressed following prior AI treatment gained CB with fulvestrant, thereby delaying indication to start chemotherapy. Prior response to an AI did not appear to be predictive for benefit with fulvestrant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic blockade of the renin angiotensin system became possible when orally active inhibitors of angiotensin converting enzyme, the enzyme which catalyzes the transformation of angiotensin I into angiotensin II, were synthetized. Two compounds, captopril and enalapril, have been investigated in clinical studies. The decrease of the pressor response to exogenous angiotensin I and of the circulating levels of angiotensin II following administration of these inhibitors has been demonstrated to be directly related to the degree of suppression of plasma angiotensin converting enzyme activity. These inhibitors have been shown to normalize blood pressure alone in some hypertensive patients whereas in many others, satisfactory blood pressure control can be achieved only after the addition of a diuretic. Captopril and enalapril also markedly improve cardiac function of patients with chronic congestive heart failure. Chronic blockade of the renin angiotensin system has therefore provided an interesting new approach to the treatment of clinical hypertension and heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paracaspase MALT1 is an Arg-specific protease that cleaves multiple substrates to promote lymphocyte proliferation and survival. The catalytic activity of MALT1 is normally tightly regulated by antigen receptor triggering, which promotes MALT1 activation by its inducible monoubiquitination-dependent dimerization. Constitutive MALT1 activity is a hallmark of specific subsets of B-cell lymphomas, which are characterized by chromosomal translocations or point mutations that activate MALT1 or its upstream regulators. Recent findings suggest that such lymphomas may be sensitive to treatment with MALT1 inhibitors. Here we review recent progress in the understanding of MALT1 function and regulation, and the development of small molecule MALT1 inhibitors for therapeutic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proline-specific dipeptidyl aminopeptidase IV (DPP IV, DPP-4, CD26), widely expressed in mammalians, releases X-Pro/Ala dipeptides from the N-terminus of peptides. DPP IV is responsible of the degradation of the incretin peptide hormones regulating blood glucose levels. Several families of DPP IV inhibitors have been synthesized and evaluated. Their positive effects on the degradation of the incretins and the control of blood glucose levels have been demonstrated in biological models and in clinical trials. Presently, several DPP IV inhibitors, the "gliptins", are approved for type 2 diabetes or are under clinical evaluation. However, the gliptins may also be of therapeutic interest for other diseases beyond the inhibition of incretin degradation. In this Perspective, the biological functions and potential substrates of DPP IV enzymes are reviewed and the characteristics of the DPP IV inhibitors are discussed in view of type 2 diabetes and further therapeutic interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.