6 resultados para AGN, radiogalassie, 3C 84

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reviewed the subjective, clinical and radiological outcome of 71 patients (84 feet) treated by scarf osteotomy for hallux valgus deformity at our institution from 1995 to 1998 with an average follow-up time of 22 months (range, 17 to 48 months). At the time of follow-up, 39% of the patients were very satisfied, 50% were satisfied and 11% were not satisfied. The mean AOFAS score raised significantly from 43 points (14-68) preoperatively to 82 points (39 to 100) at follow-up (p < 0.001). The radiological angles including M1-M2, M1-P1, M1-M5 and DMAA improved significantly (p < 0.001). Among the 16 complications recorded, seven (8%) were minor and nine (11%) required an additional procedure. The scarf osteotomy of the first metatarsal coupled with a lateral soft-tissue release and, in three-quarters of our cases, with a basal closing wedge varisation osteotomy of the first phalanx, resulted in overall high satisfaction rate as well as significant clinical and radiological improvements in our series. Nevertheless, the range of motion of the first MP joint remained low: 30 degrees to 74 degrees in 52 patients (62%) and <30 degrees in four patients (5%). Furthermore, the mobility of the first ray as well as the consequences of the procedure in the sagittal plane need to be assessed more accurately, and this may be achieved by incorporating measurement of the plantar pressures in the forefoot area into the global rating system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corpus callosum (CC) is the main pathway responsible for interhemispheric communication. CC agenesis is associated with numerous human pathologies, suggesting that a range of developmental defects can result in abnormalities in this structure. Midline glial cells are known to play a role in CC development, but we here show that two transient populations of midline neurons also make major contributions to the formation of this commissure. We report that these two neuronal populations enter the CC midline prior to the arrival of callosal pioneer axons. Using a combination of mutant analysis and in vitro assays, we demonstrate that CC neurons are necessary for normal callosal axon navigation. They exert an attractive influence on callosal axons, in part via Semaphorin 3C and its receptor Neuropilin-1. By revealing a novel and essential role for these neuronal populations in the pathfinding of a major cerebral commissure, our study brings new perspectives to pathophysiological mechanisms altering CC formation.