314 resultados para ADRENERGIC SIGNALING
em Université de Lausanne, Switzerland
Resumo:
The alpha-1 adrenergic receptors (alpha(1)ARs) are critical in sympathetically mediated vasoconstriction. The specific role of each alpha(1)AR subtype in regulating vasoconstriction remains highly controversial. Limited pharmacological studies suggest that differential alpha(1)AR responses may be the result of differential activation of junctional versus extrajunctional receptors. We tested the hypothesis that the alpha(1B)AR subtype is critical in mediating sympathetic junctional neurotransmission. We measured in vivo integrated cardiovascular responses to a hypotensive stimulus (induced via transient bilateral carotid occlusion [TBCO]) in alpha(1B)AR knockout (KO) mice and their wild-type (WT) littermates. In WT mice, after dissection of the carotid arteries and denervation of aortic baroreceptor buffering nerves, TBCO produced significant pressor and positive inotropic effects. Both responses were markedly attenuated in alpha(1B)AR KO mice (change systolic blood pressure 46+/-8 versus 11+/-2 mm Hg; percentage change in the end-systolic pressure-volume relationship [ESPVR] 36+/-7% versus 12+/-2%; WT versus KO; P<0.003). In vitro alpha(1)AR mesenteric microvascular contractile responses to endogenous norepinephrine (NE; elicited by electrical field stimulation 10 Hz) was markedly depressed in alpha(1B)AR KO mice compared with WT (12.4+/-1.7% versus 21.5+/-1.2%; P<0.001). In contrast, responses to exogenous NE were similar in alpha(1B)AR KO and WT mice (22.4+/-7.3% versus 33.4+/-4.3%; NS). Collectively, these results demonstrate a critical role for the alpha(1B)AR in baroreceptor-mediated adrenergic signaling at the vascular neuroeffector junction. Moreover, alpha(1B)ARs modulate inotropic responses to baroreceptor activation. The critical role for alpha(1B)AR in neuroeffector regulation of vascular tone and myocardial contractility has profound clinical implications for designing therapies for orthostatic intolerance.
Resumo:
Tissue transglutaminase (TG2) is a protein cross-linking enzyme known to be expressed by hepatocytes and to be induced during the in vivo hepatic apoptosis program. TG2 is also a G protein that mediates intracellular signaling by the alpha-1b-adrenergic receptor (AR) in liver cells. Fas/Fas ligand interaction plays a crucial role in various liver diseases, and administration of agonistic anti-Fas antibodies to mice causes both disseminated endothelial cell apoptosis and fulminant hepatic failure. Here we report that an intraperitoneal dose of anti-Fas antibodies, which is sublethal for wild-type mice, kills all the TG2 knock-out mice within 20 hours. Although TG2-/- thymocytes exposed to anti-Fas antibodies die at the same rate as wild-type mice, TG2-/- hepatocytes show increased sensitivity toward anti-Fas treatment both in vivo and in vitro, with no change in their cell surface expression of Fas, levels of FLIP(L) (FLICE-inhibitory protein), or the rate of I-kappaBalpha degradation, but a decrease in the Bcl-xL expression. We provide evidence that this is the consequence of the impaired AR signaling that normally regulates the levels of Bcl-xL in the liver. In conclusion, our data suggest the involvement of adrenergic signaling pathways in the hepatic regeneration program, in which Fas ligand-induced hepatocyte proliferation with a simultaneous inhibition of the Fas-death pathway plays a determinant role.
Resumo:
Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)-2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of beta-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet-induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.
Resumo:
Attenuation of early restenosis after percutaneous coronary intervention (PCI) is important for the successful treatment of coronary artery disease. Some clinical studies have shown that hypertension is a risk factor for early restenosis after PCI. These findings suggest that alpha(1)-adrenergic receptors (alpha(1)-ARs) may facilitate restenosis after PCI because of alpha(1)-AR's remarkable contribution to the onset of hypertension. In this study, we examined the neointimal formation after vascular injury in the femoral artery of alpha(1A)-knockout (alpha(1A)-KO), alpha(1B)-KO, alpha(1D)-KO, alpha(1A)-/alpha(1B)-AR double-KO (alpha(1AB)-KO), and wild-type mice to investigate the functional role of each alpha(1)-AR subtype in neointimal formation, which is known to promote restenosis. Neointimal formation 4 wk after wire injury was significantly (P < 0.05) smaller in alpha(1AB)-KO mice than in any other group of mice, while blood pressures were not altered in any of the groups of mice after wire injury compared with those before it. These results suggest that lack of both alpha(1A)- and alpha(1B)-ARs could be necessary to inhibit neointimal formation in the mouse femoral artery.
Resumo:
In response to various pathological stresses, the heart undergoes a pathological remodeling process that is associated with cardiomyocyte hypertrophy. Because cardiac hypertrophy can progress to heart failure, a major cause of lethality worldwide, the intracellular signaling pathways that control cardiomyocyte growth have been the subject of intensive investigation. It has been known for more than a decade that the small molecular weight GTPase RhoA is involved in the signaling pathways leading to cardiomyocyte hypertrophy. Although some of the hypertrophic pathways activated by RhoA have now been identified, the identity of the exchange factors that modulate its activity in cardiomyocytes is currently unknown. In this study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critical for activating RhoA and transducing hypertrophic signals downstream of alpha1-adrenergic receptors (ARs). In particular, our results indicate that suppression of AKAP-Lbc expression by infecting rat neonatal ventricular cardiomyocytes with lentiviruses encoding AKAP-Lbc-specific short hairpin RNAs strongly reduces both alpha1-AR-mediated RhoA activation and hypertrophic responses. Interestingly, alpha1-ARs promote AKAP-Lbc activation via a pathway that requires the alpha subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor (GEF) involved in the signaling pathways leading to cardiomyocytes hypertrophy.
Resumo:
The mitogen-activated protein kinases (MAPKs) pathways are highly organized signaling systems that transduce extracellular signals into a variety of intracellular responses. In this context, it is currently poorly understood how kinases constituting these signaling cascades are assembled and activated in response to receptor stimulation to generate specific cellular responses. Here, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor activity, is critically involved in the activation of the p38α MAPK downstream of α(1b)-adrenergic receptors (α(1b)-ARs). Our results indicate that AKAP-Lbc can assemble a novel transduction complex containing the RhoA effector PKNα, MLTK, MKK3, and p38α, which integrates signals from α(1b)-ARs to promote RhoA-dependent activation of p38α. In particular, silencing of AKAP-Lbc expression or disrupting the formation of the AKAP-Lbc·p38α signaling complex specifically reduces α(1)-AR-mediated p38α activation without affecting receptor-mediated activation of other MAPK pathways. These findings provide a novel mechanistic hypothesis explaining how assembly of macromolecular complexes can specify MAPK signaling downstream of α(1)-ARs.
Resumo:
The α(1)-adrenergic receptor (AR) subtypes (α(1a), α(1b), and α(1d)) mediate several physiological effects of epinephrine and norepinephrine. Despite several studies in recombinant systems and insight from genetically modified mice, our understanding of the physiological relevance and specificity of the α(1)-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that β arrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α(1)-AR subtypes in various organs.
Resumo:
Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.
Resumo:
We combined biophysical, biochemical, and pharmacological approaches to investigate the ability of the alpha 1a- and alpha 1b-adrenergic receptor (AR) subtypes to form homo- and hetero-oligomers. Receptors tagged with different epitopes (hemagglutinin and Myc) or fluorescent proteins (cyan and green fluorescent proteins) were transiently expressed in HEK-293 cells either individually or in different combinations. Fluorescence resonance energy transfer measurements provided evidence that both the alpha 1a- and alpha 1b-AR can form homo-oligomers with similar transfer efficiency of approximately 0.10. Hetero-oligomers could also be observed between the alpha 1b- and the alpha 1a-AR subtypes but not between the alpha 1b-AR and the beta2-AR, the NK1 tachykinin, or the CCR5 chemokine receptors. Oligomerization of the alpha 1b-AR did not require the integrity of its C-tail, of two glycophorin motifs, or of the N-linked glycosylation sites at its N terminus. In contrast, helix I and, to a lesser extent, helix VII were found to play a role in the alpha 1b-AR homo-oligomerization. Receptor oligomerization was not influenced by the agonist epinephrine or by the inverse agonist prazosin. A constitutively active (A293E) as well as a signaling-deficient (R143E) mutant displayed oligomerization features similar to those of the wild type alpha 1b-AR. Confocal imaging revealed that oligomerization of the alpha1-AR subtypes correlated with their ability to co-internalize upon exposure to the agonist. The alpha 1a-selective agonist oxymetazoline induced the co-internalization of the alpha 1a- and alpha 1b-AR, whereas the alpha 1b-AR could not co-internalize with the NK1 tachykinin or CCR5 chemokine receptors. Oligomerization might therefore represent an additional mechanism regulating the physiological responses mediated by the alpha 1a- and alpha 1b-AR subtypes.
Resumo:
The adrenergic receptors are among the best characterized G protein-coupled receptors (GPCRs) and knowledge on this receptor family has provided several important paradigms about GPCR function and regulation. One of the most recent paradigms initially supported by studies on adrenergic receptors is that both βarrestins and G proteincoupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. In this review we will briefly summarize the main features of βarrestin binding to the adrenergic receptor subtypes and we will review more in detail the main proteins found to selectively interact with distinct AR subtype. At the end, we will review the main findings on oligomerization of the AR subtypes.
Resumo:
Catecholamines and alpha(1)-adrenergic receptors (alpha(1)-ARs) cause cardiac hypertrophy in cultured myocytes and transgenic mice, but heart size is normal in single KOs of the main alpha(1)-AR subtypes, alpha(1A/C) and alpha(1B). Here we tested whether alpha(1)-ARs are required for developmental cardiac hypertrophy by generating alpha(1A/C) and alpha(1B) double KO (ABKO) mice, which had no cardiac alpha(1)-AR binding. In male ABKO mice, heart growth after weaning was 40% less than in WT, and the smaller heart was due to smaller myocytes. Body and other organ weights were unchanged, indicating a specific effect on the heart. Blood pressure in ABKO mice was the same as in WT, showing that the smaller heart was not due to decreased load. Contractile function was normal by echocardiography in awake mice, but the smaller heart and a slower heart rate reduced cardiac output. alpha(1)-AR stimulation did not activate extracellular signal-regulated kinase (Erk) and downstream kinases in ABKO myocytes, and basal Erk activity was lower in the intact ABKO heart. In female ABKO mice, heart size was normal, even after ovariectomy. Male ABKO mice had reduced exercise capacity and increased mortality with pressure overload. Thus, alpha(1)-ARs in male mice are required for the physiological hypertrophy of normal postnatal cardiac development and for an adaptive response to cardiac stress.
Resumo:
The beta 2-adrenergic receptor undergoes isomerization between an inactive conformation (R) and an active conformation (R*). The formation of the active conformation of the receptor molecule can be promoted by adrenergic agonists or by mutations in the third cytoplasmic domain that constitutively activate the receptor. Here we show that, of several beta-adrenergic receptor-blocking drugs tested, only two, ICI 118551 and betaxolol, inhibit the basal signaling activity of the beta 2-adrenergic receptor, thus acting as negative antagonists. We document the molecular properties of the more efficacious ICI 118551; (i) it shows higher affinity for the inactive form of the receptor and (ii) it inhibits the spontaneous formation of a beta-adrenergic receptor kinase substrate by the receptor. These properties are opposite those of adrenergic agonists, indicating that, in a fashion reciprocal to that of agonists, negative antagonists promote the formation of an inactive conformation of the receptor.
Insulin and insulin-like growth factor I receptors utilize different G protein signaling components.
Resumo:
We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.
Resumo:
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that potentiates glucose-induced insulin secretion by pancreatic beta cells. The mechanisms of interaction between GLP-1 and glucose signaling pathways are not well understood. Here we studied the coupling of the cloned GLP-1 receptor, expressed in fibroblasts or in COS cells, to intracellular second messengers and compared this signaling with that of the endogenous receptor expressed in insulinoma cell lines. Binding of GLP-1 to the cloned receptor stimulated formation of cAMP with the same dose dependence and similar kinetics, compared with the endogenous receptor of insulinoma cells. Compared with forskolin-induced cAMP accumulation, that induced by GLP-1 proceeded with the same initial kinetics but rapidly reached a plateau, suggesting fast desensitization of the receptor. Coupling to the phospholipase C pathway was assessed by measuring inositol phosphate production and variations in the intracellular calcium concentration. No GLP-1-induced production of inositol phosphates could be measured in the different cell types studied. A rise in the intracellular calcium concentration was nevertheless observed in transfected COS cells but was much smaller than that observed in response to norepinephrine in cells also expressing the alpha 1B-adrenergic receptor. Importantly, no such increase in the intracellular calcium concentration could be observed in transfected fibroblasts or insulinoma cells, which, however, responded well to thrombin or carbachol, respectively. Together, our data show that interaction between GLP-1 and glucose signaling pathways in beta cells may be mediated uniquely by an increase in the intracellular cAMP concentration, with the consequent activation of protein kinase A and phosphorylation of elements of the glucose-sensing apparatus or of the insulin granule exocytic machinery.
Resumo:
AIM: Alpha1-adrenergic receptors (alpha1-ARs) are classified into three subtypes: alpha1A-AR, alpha1B-AR, and alpha1D-AR. Triple disruption of alpha1A-AR, alpha1B-AR, and alpha1D-AR genes results in hypotension and produces no contractile response of the thoracic aorta to noradrenalin. Presently, we characterized vascular contractility against other vasoconstrictors, such as potassium, prostaglandin F2alpha (PGF(2alpha)) and 5-hydroxytryptamine (5-HT), in alpha1A-AR, alpha1B-AR, and alpha1D-AR triple knockout (alpha1-AR triple KO) mice. MAIN METHODS: The contractile responses to the stimulation with vasoconstrictors were studied using isolated thoracic aorta. KEY FINDINGS: As a result, the phasic and tonic contraction induced by a high concentration of potassium (20 mM) was enhanced in the isolated thoracic aorta of alpha1-AR triple KO mice compared with that of wild-type (WT) mice. In addition, vascular responses to PGF(2alpha) and 5-HT were also enhanced in the isolated thoracic aorta of alpha1-AR triple KO mice compared with WT mice. Similar to in vitro findings with isolated thoracic aorta, in vivo pressor responses to PGF(2alpha) were enhanced in alpha1-AR triple KO mice. Real-time reverse transcription-polymerase chain reaction analysis and western blot analysis indicate that gene expression of the 5-hydroxytryptamine 2A (5-HT(2A)) receptor was up-regulated in the thoracic aorta of alpha1-AR triple KO mice while the prostaglandin F2alpha receptor (FP) was unchanged. SIGNIFICANCE: These results suggest that loss of alpha1-ARs can lead to enhancement of vascular responsiveness to the vasoconstrictors and may imply that alpha1-ARs and the subsequent signaling regulate the vascular responsiveness to other stimulations such as depolarization, 5-HT and PGF(2alpha).