22 resultados para ACROSOMAL SPIKE
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: To present the long-term follow-up of 10 adolescents and young adults with documented cognitive and behavioral regression as children due to nonlesional focal, mainly frontal, epilepsy with continuous spike-waves during slow wave sleep (CSWS). METHODS: Past medical and electroencephalography (EEG) data were reviewed and neuropsychological tests exploring main cognitive functions were administered. KEY FINDINGS: After a mean duration of follow-up of 15.6 years (range, 8-23 years), none of the 10 patients had recovered fully, but four regained borderline to normal intelligence and were almost independent. Patients with prolonged global intellectual regression had the worst outcome, whereas those with more specific and short-lived deficits recovered best. The marked behavioral disorders resolved in all but one patient. Executive functions were neither severely nor homogenously affected. Three patients with a frontal syndrome during the active phase (AP) disclosed only mild residual executive and social cognition deficits. The main cognitive gains occurred shortly after the AP, but qualitative improvements continued to occur. Long-term outcome correlated best with duration of CSWS. SIGNIFICANCE: Our findings emphasize that cognitive recovery after cessation of CSWS depends on the severity and duration of the initial regression. None of our patients had major executive and social cognition deficits with preserved intelligence, as reported in adults with early destructive lesions of the frontal lobes. Early recognition of epilepsy with CSWS and rapid introduction of effective therapy are crucial for a best possible outcome.
Resumo:
We describe the case of a man with a history of complex partial seizures and severe language, cognitive and behavioural regression during early childhood (3.5 years), who underwent epilepsy surgery at the age of 25 years. His early epilepsy had clinical and electroencephalogram features of the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia (Landau-Kleffner syndrome), which we considered initially to be of idiopathic origin. Seizures recurred at 19 years and presurgical investigations at 25 years showed a lateral frontal epileptic focus with spread to Broca's area and the frontal orbital regions. Histopathology revealed a focal cortical dysplasia, not visible on magnetic resonance imaging. The prolonged but reversible early regression and the residual neuropsychological disorders during adulthood were probably the result of an active left frontal epilepsy, which interfered with language and behaviour during development. Our findings raise the question of the role of focal cortical dysplasia as an aetiology in the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia.
Resumo:
ABSTRACT: Massive synaptic pruning following over-growth is a general feature of mammalian brain maturation. Pruning starts near time of birth and is completed by time of sexual maturation. Trigger signals able to induce synaptic pruning could be related to dynamic functions that depend on the timing of action potentials. Spike-timing-dependent synaptic plasticity (STDP) is a change in the synaptic strength based on the ordering of pre- and postsynaptic spikes. The relation between synaptic efficacy and synaptic pruning suggests that the weak synapses may be modified and removed through competitive "learning" rules. This plasticity rule might produce the strengthening of the connections among neurons that belong to cell assemblies characterized by recurrent patterns of firing. Conversely, the connections that are not recurrently activated might decrease in efficiency and eventually be eliminated. The main goal of our study is to determine whether or not, and under which conditions, such cell assemblies may emerge out of a locally connected random network of integrate-and-fire units distributed on a 2D lattice receiving background noise and content-related input organized in both temporal and spatial dimensions. The originality of our study stands on the relatively large size of the network, 10,000 units, the duration of the experiment, 10E6 time units (one time unit corresponding to the duration of a spike), and the application of an original bio-inspired STDP modification rule compatible with hardware implementation. A first batch of experiments was performed to test that the randomly generated connectivity and the STDP-driven pruning did not show any spurious bias in absence of stimulation. Among other things, a scale factor was approximated to compensate for the network size on the ac¬tivity. Networks were then stimulated with the spatiotemporal patterns. The analysis of the connections remaining at the end of the simulations, as well as the analysis of the time series resulting from the interconnected units activity, suggest that feed-forward circuits emerge from the initially randomly connected networks by pruning. RESUME: L'élagage massif des synapses après une croissance excessive est une phase normale de la ma¬turation du cerveau des mammifères. L'élagage commence peu avant la naissance et est complété avant l'âge de la maturité sexuelle. Les facteurs déclenchants capables d'induire l'élagage des synapses pourraient être liés à des processus dynamiques qui dépendent de la temporalité rela¬tive des potentiels d'actions. La plasticité synaptique à modulation temporelle relative (STDP) correspond à un changement de la force synaptique basé sur l'ordre des décharges pré- et post- synaptiques. La relation entre l'efficacité synaptique et l'élagage des synapses suggère que les synapses les plus faibles pourraient être modifiées et retirées au moyen d'une règle "d'appren¬tissage" faisant intervenir une compétition. Cette règle de plasticité pourrait produire le ren¬forcement des connexions parmi les neurones qui appartiennent à une assemblée de cellules caractérisée par des motifs de décharge récurrents. A l'inverse, les connexions qui ne sont pas activées de façon récurrente pourraient voir leur efficacité diminuée et être finalement éliminées. Le but principal de notre travail est de déterminer s'il serait possible, et dans quelles conditions, que de telles assemblées de cellules émergent d'un réseau d'unités integrate-and¬-fire connectées aléatoirement et distribuées à la surface d'une grille bidimensionnelle recevant à la fois du bruit et des entrées organisées dans les dimensions temporelle et spatiale. L'originalité de notre étude tient dans la taille relativement grande du réseau, 10'000 unités, dans la durée des simulations, 1 million d'unités de temps (une unité de temps correspondant à une milliseconde), et dans l'utilisation d'une règle STDP originale compatible avec une implémentation matérielle. Une première série d'expériences a été effectuée pour tester que la connectivité produite aléatoirement et que l'élagage dirigé par STDP ne produisaient pas de biais en absence de stimu¬lation extérieure. Entre autres choses, un facteur d'échelle a pu être approximé pour compenser l'effet de la variation de la taille du réseau sur son activité. Les réseaux ont ensuite été stimulés avec des motifs spatiotemporels. L'analyse des connexions se maintenant à la fin des simulations, ainsi que l'analyse des séries temporelles résultantes de l'activité des neurones, suggèrent que des circuits feed-forward émergent par l'élagage des réseaux initialement connectés au hasard.
Resumo:
A 28-month-old boy was referred for acute onset of abnormal head movements. History revealed an insidious progressive regression in behaviour and communication over several months. Head and shoulder 'spasms' with alteration of consciousness and on one occasion ictal laughter were seen. The electroencephalograph (EEG) showed repeated bursts of brief generalized polyspikes and spike-wave during the 'spasms', followed by flattening, a special pattern which never recurred after treatment. Review of family videos showed a single 'minor' identical seizure 6 months previously. Magnetic resonance imaging was normal. Clonazepam brought immediate cessation of seizures, normalization of the EEG and a parallel spectacular improvement in communication, mood and language. Follow-up over the next 10 months showed a new regression unaccompained by recognized seizures, although numerous seizures were discovered during the videotaped neuropsychological examination, when stereotyped subtle brief paroxysmal changes in posture and behaviour could be studied in slow motion and compared with the 'prototypical' initial ones. The EEG showed predominant rare left-sided fronto-temporal discharges. Clonazepam was changed to carbamazepin with marked improvement in behaviour, language and cognition which has been sustained up to the last control at 51 months. Videotaped home observations allowed the documentation of striking qualitative and quantitative variations in social interaction and play of autistic type in relation to the epileptic activity. We conclude that this child has a special characteristic epileptic syndrome with subtle motor and vegetative symptomatology associated with an insidious catastrophic 'autistic-like' regression which could be overlooked. The methods used to document such fluctuating epileptic behavioural manifestations are discussed.
Resumo:
Recent advances in signal analysis have engendered EEG with the status of a true brain mapping and brain imaging method capable of providing spatio-temporal information regarding brain (dys)function. Because of the increasing interest in the temporal dynamics of brain networks, and because of the straightforward compatibility of the EEG with other brain imaging techniques, EEG is increasingly used in the neuroimaging community. However, the full capability of EEG is highly underestimated. Many combined EEG-fMRI studies use the EEG only as a spike-counter or an oscilloscope. Many cognitive and clinical EEG studies use the EEG still in its traditional way and analyze grapho-elements at certain electrodes and latencies. We here show that this way of using the EEG is not only dangerous because it leads to misinterpretations, but it is also largely ignoring the spatial aspects of the signals. In fact, EEG primarily measures the electric potential field at the scalp surface in the same way as MEG measures the magnetic field. By properly sampling and correctly analyzing this electric field, EEG can provide reliable information about the neuronal activity in the brain and the temporal dynamics of this activity in the millisecond range. This review explains some of these analysis methods and illustrates their potential in clinical and experimental applications.
Resumo:
A boy with a right congenital hemiparesis due to a left pre-natal middle cerebral artery infarct developed focal epilepsy at 33 months and then an insidious and subsequently more rapid, massive cognitive and behavioural regression with a frontal syndrome between the ages of 4 and 5 years with continuous spike-waves during sleep (CSWS) on the EEG. Both the epilepsy and the CSWS were immediately suppressed by hemispherotomy at the age of 5 years and 4 months. A behavioural-cognitive follow-up prior to hemispherotomy, an per-operative EEG and corticography and serial post-operative neuropsychological assessments were performed until the age of 11 years. The spread of the epileptic activity to the "healthy" frontal region was the cause of the reversible frontal syndrome. A later gradual long-term but incomplete cognitive recovery, with moderate mental disability was documented. This outcome is probably explained by another facet of the epilepsy, namely the structural effects of prolonged epileptic discharges in rapidly developing cerebral networks which are, at the same time undergoing the reorganization imposed by a unilateral early hemispheric lesion. Group studies on the outcome of children before and after hemispherectomy using only single IQ measures, pre- and post-operatively, may miss particular epileptic cognitive dysfunctions as they are likely to be different from case to case. Such detailed and rarely available complementary clinical and EEG data obtained in a single case at different time periods in relation to the epilepsy, including per-operative electrophysiological findings, may help to understand the different cognitive deficits and recovery profiles and the limits of full cognitive recovery.
Resumo:
New high-precision U/Pb geochronology from volcanic ashes shows that the Triassic-Jurassic boundary and end-Triassic biological crisis from two independent marine stratigraphic sections correlate with the onset of terrestrial flood volcanism in the Central Atlantic Magmatic Province to <150 ka. This narrows the correlation between volcanism and mass extinction by an order of magnitude for any such catastrophe in Earth history. We also show that a concomitant drop and rise in sea level and negative delta C-13 spike in the very latest Triassic occurred locally in <290 ka. Such rapid sea-level fluctuations on a global scale require that global cooling and glaciation were closely associated with the end-Triassic extinction and potentially driven by Central Atlantic Magmatic Province volcanism.
Resumo:
Aim We report three cases of Landau-Kleffner syndrome (LKS) in children (two females, one male) in whom diagnosis was delayed because the sleep electroencephalography (EEG) was initially normal. Method Case histories including EEG, positron emission tomography findings, and long-term outcome were reviewed. Results Auditory agnosia occurred between the age of 2 years and 3 years 6 months, after a period of normal language development. Initial awake and sleep EEG, recorded weeks to months after the onset of language regression, during a nap period in two cases and during a full night of sleep in the third case, was normal. Repeat EEG between 2 months and 2 years later showed epileptiform discharges during wakefulness and strongly activated by sleep, with a pattern of continuous spike-waves during slow-wave sleep in two patients. Patients were diagnosed with LKS and treated with various antiepileptic regimens, including corticosteroids. One patient in whom EEG became normal on hydrocortisone is making significant recovery. The other two patients did not exhibit a sustained response to treatment and remained severely impaired. Interpretation Sleep EEG may be normal in the early phase of acquired auditory agnosia. EEG should be repeated frequently in individuals in whom a firm clinical diagnosis is made to facilitate early treatment.
Resumo:
Rapport de synthèse : Cette thèse a étudié en détail le cas d'un enfant souffrant d'une hémiplégie congénitale sur un infarctus prénatal étendu qui a développé une forme particulière d'épilepsie, le syndrome des pointes ondes continues du sommeil (POCS), associé à une régression mentale massive. Les caractéristiques de cette détérioration pointaient vers un dysfonctionnement de type frontal. Une chirurgie de l'épilepsie (hémisphérotomie) a, non seulement, permis la guérison de l'épilepsie mais une récupération rapide sur le plan comportemental et cognitif, suivie d'une reprise plus lente du développement, avec finalement à l'âge de 11 ans un niveau de déficience intellectuelle modérée. L'intérêt de cette étude réside dans le fait que l'enfant a pu être suivi prospectivement entre l'âge de 4.5 ans et 11 ans par des enregistrements électro-encéphalographiques (EEG) ainsi que des tests neuropsychologiques et des questionnaires de comportements sériés, permettant de comparer les périodes pré-, péri- et postopératoires, ce qui est rarement réalisable. Un enregistrement EEG de surface a même pu être effectué durant l'opération sur l'hémisphère non lésé, permettant de documenter l'arrêt des décharges épileptiformes généralisées dès la fin de l'intervention. L'hypothèse que nous avons- souhaité démontrer est que la régression comportementale et cognitive présentée par l'enfant après une période de développement précoce presque normale (retard de langage) était de nature épileptique : nous l'expliquons par la propagation de l'activité électrique anormale à partir de la lésion de l'hémisphère gauche vers les régions préservées, en particulier frontales bilatérales. L'hémisphérotomie a permis une récupération rapide en déconnectant l'hémisphère gauche lésé et épileptogène de l'hémisphère sain, qui a ainsi pu reprendre les fonctions cognitives les plus importantes. Les progrès plus lents par la suite et l'absence de rattrapage au delà d'un niveau de déficience mentale modérée sont plus difficiles à expliquer: on postule ici un effet de l'épilepsie sur le développement de réseaux neuronaux de l'hémisphère initialement non lésé, réseaux qui sont à la fois à un stade précoce de leur maturation et en cours de réorganisation suite à la lésion prénatale. La littérature sur les déficits cognitifs avant et après hemisphérotomie s'est surtout préoccupée du langage et de sa récupération possible. À notre connaissance, notre étude est la première à documenter la réversibilité d'une détérioration mentale avec les caractéristiques d'un syndrome frontal après hémisphérotomie. La chirurgie de l'épilepsie a offert ici une occasion unique de documenter le rôle de l'activité épileptique dans la régression cognitive puisqu'en interrompant brusquement la propagation de l'activité électrique anormale, on a pu comparer la dynamique du développement avant et après l'intervention. La mise en relation des multiples examens cliniques et EEG pratiqués chez un seul enfant sur plusieurs années a permis d'obtenir des informations importantes dans la compréhension des troubles cognitifs et du comportement associés aux épilepsies focales réfractaires. ABSTRACT : A boy with a right congenital hemiparesis due to a left pre-natal middle cerebral artery infarct developed focal epilepsy at 33 months and then an insidious and subsequently more rapid, massive cognitive and behavioural regression with a frontal syndrome between the ages of 4 and 5 years with continuous spike-waves during sleep (CSWS) on the EEG. Both the epilepsy and the CSWS were immediately suppressed by hemispherotomy at the age of 5 years and 4months. A behavioural-cognitive follow-up prior to hemispheratomy, an per-operative EEG and corticography and serial post-operative neuropsychological assessments were performed until the age of 11 years. The spread of the epileptic activity to the "healthy" frontal region was the cause of the reversible frontal syndrome. A later gradual long-term but incomplete cognitive recovery, with moderate mental disability was documented. T9ris outcome is probably explained by another facet of the epilepsy, namely the structural effects of prolonged epileptic dischazges in rapidly developing cerebral networks which are, at the same time undergoing the reorganization imposed by a unilateral early hemispheric lesion. Group studies on the outcome of children before and after hemispherectomy using only single IQ measures, pre- and postoperatively, may miss particular epileptic cognitive dysfunctions as they are likely to be different from case to case. Such detailed and rarely available complementary clinical and EEG data obtained in a single case at different time periods in relation to the epilepsy, including peroperative electrophysiological findings, may help to understand the different cognitive deficits and recovery profiles and the limits of full cognitive recovery.
Resumo:
Purpose: Epilepsy surgery in young children with focal lesions offers a unique opportunity to study the impact of severe seizures on cognitive development during a period of maximal brain plasticity, if immediate control can be obtained. We studied 11 children with early refractory epilepsy (median onset, 7.5 months) due to focal lesion who were rendered seizure-free after surgery performed before the age of 6 years. Methods: The children were followed prospectively for a median of 5 years with serial neuropsychological assessments correlated with electroencephalography (EEG) and surgery-related variables. Results: Short-term follow-up revealed rapid cognitive gains corresponding to cessation of intense and propagated epileptic activity [two with early catastrophic epilepsy; two with regression and continuous spike-waves during sleep (CSWS) or frontal seizures]; unchanged or slowed velocity of progress in six children (five with complex partial seizures and frontal or temporal cortical malformations). Longer-term follow-up showed stabilization of cognitive levels in the impaired range in most children and slow progress up to borderline level in two with initial gains. Discussion: Cessation of epileptic activity after early surgery can be followed by substantial cognitive gains, but not in all children. In the short term, lack of catch-up may be explained by loss of retained function in the removed epileptogenic area; in the longer term, by decreased intellectual potential of genetic origin, irreversible epileptic damage to neural networks supporting cognitive functions, or reorganization plasticity after early focal lesions. Cognitive recovery has to be considered as a "bonus," which can be predicted in some specific circumstances.
Resumo:
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.
Resumo:
Early-onset acquired epileptic aphasia (Landau-Kleffner syndrome) may present as a developmental language disturbance and the affected child may also exhibit autistic features. Landau-Kleffner is now seen as the rare and severe end of a spectrum of cognitive-behavioural symptoms that can be seen in idiopathic (genetic) focal epilepsies of childhood, the benign end being the more frequent typical rolandic epilepsy. Several recent studies show that many children with rolandic epilepsy have minor developmental cognitive and behavioural problems and that some undergo a deterioration (usually temporary) in these domains, the so-called "atypical" forms of the syndrome. The severity and type of deterioration correlate with the site and spread of the epileptic spikes recorded on the electroencephalogram within the perisylvian region, and continuous spike-waves during sleep (CSWS) frequently occur during this period of the epileptic disorder. Some of these children have more severe preexisting communicative and language developmental disorders. If early stagnation or regression occurs in these domains, it presumably reflects epileptic activity in networks outside the perisylvian area, i.e. those involved in social cognition and emotions. Longitudinal studies will be necessary to find out if and how much the bioelectrical abnormalities play a causal role in these subgroup of children with both various degrees of language and autistic regression and features of idiopathic focal epilepsy. One has to remember that it took nearly 40 years to fully acknowledge the epileptic origin of aphasia in Landau-Kleffner syndrome and the milder acquired cognitive problems in rolandic epilepsies.
Resumo:
Barrels are discrete cytoarchitectonic neurons cluster located in the layer IV of the somatosensory¦cortex in mice brain. Each barrel is related to a specific whisker located on the mouse snout. The¦whisker-to-barrel pathway is a part of the somatosensory system that is intensively used to explore¦sensory activation induced plasticity in the cerebral cortex.¦Different recording methods exist to explore the cortical response induced by whisker deflection in¦the cortex of anesthetized mice. In this work, we used a method called the Single-Unit Analysis by¦which we recorded the extracellular electric signals of a single barrel neuron using a microelectrode.¦After recording the signal was processed by discriminators to isolate specific neuronal shape (action¦potentials).¦The objective of this thesis was to familiarize with the barrel cortex recording during whisker¦deflection and its theoretical background and to compare two different ways of discriminating and¦sorting cortical signal, the Waveform Window Discriminator (WWD) or the Spike Shape Discriminator (SSD).¦WWD is an electric module allowing the selection of specific electric signal shape. A trigger and a¦window potential level are set manually. During measurements, every time the electric signal passes¦through the two levels a dot is generated on time line. It was the method used in previous¦extracellular recording study in the Département de Biologie Cellulaire et de Morphologie (DBCM) in¦Lausanne.¦SSD is a function provided by the signal analysis software Spike2 (Cambridge Electronic Design). The¦neuronal signal is discriminated by a complex algorithm allowing the creation of specific templates.¦Each of these templates is supposed to correspond to a cell response profile. The templates are saved¦as a number of points (62 in this study) and are set for each new cortical location. During¦measurements, every time the cortical recorded signal corresponds to a defined number of templates¦points (60% in this study) a dot is generated on time line. The advantage of the SSD is that multiple¦templates can be used during a single stimulation, allowing a simultaneous recording of multiple¦signals.¦It exists different ways to represent data after discrimination and sorting. The most commonly used¦in the Single-Unit Analysis of the barrel cortex are the representation of the time between stimulation¦and the first cell response (the latency), the representation of the Response Magnitude (RM) after¦whisker deflection corrected for spontaneous activity and the representation of the time distribution¦of neuronal spikes on time axis after whisker stimulation (Peri-Stimulus Time Histogram, PSTH).¦The results show that the RMs and the latencies in layer IV were significantly different between the¦WWD and the SSD discriminated signal. The temporal distribution of the latencies shows that the¦different values were included between 6 and 60ms with no peak value for SSD while the WWD¦data were all gathered around a peak of 11ms (corresponding to previous studies). The scattered¦distribution of the latencies recorded with the SSD did not correspond to a cell response.¦The SSD appears to be a powerful tool for signal sorting but we do not succeed to use it for the¦Single-Unit Analysis extracellular recordings. Further recordings with different SSD templates settings¦and larger sample size may help to show the utility of this tool in Single-Unit Analysis studies.
Resumo:
Purpose: To present the long-term outcome (LTO) of 10 adolescents and young adults with documented cognitive and behavioral regression as children due to non-lesional focal, mainly frontal epilepsy with continuous spike-waves during slow wave sleep (CSWS). Method: Past medical and EEG data of all patients were reviewed and neuropsychological tests exploring main cognitive functions were administered. Result: After a mean duration of follow-up of 15.6 years (range 8-23 years), none of the 10 patients had recovered fully, but four regained borderline to normal intelligence and were almost independent. Patients with prolonged global intellectual regression had the worst outcome, whereas those with more specific and short-lived deficits recovered best. The marked behavioral disorders that were so disturbing during the active period (AP) resolved in all but one patient. Executive functions were neither severely nor homogenously affected. Three patients with a frontal syndrome during the AP disclosed only mild residual executive and social cognition deficits. The main cognitive gains occurred shortly after the AP, but qualitative improvements continued to occur. LTO correlated best with duration of CSWS. Conclusion: Our findings emphasize that cognitive recovery after cessation of CSWS depends on the severity and duration of the initial regression. None of our patients had major executive and social cognition deficits with preserved intelligence as reported in adults with destructive lesions of the frontal lobes during childhood. Early recognition of epilepsy with CSWS and rapid introduction of effective therapy are crucial for a best possible outcome.